Publication:
On the product of translated division polynomials and somos sequences

dc.contributor.authorGezer, Betül
dc.contributor.authorBizim, Osman
dc.contributor.buuauthorGEZER, BETÜL
dc.contributor.buuauthorBİZİM, OSMAN
dc.contributor.departmentBursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.
dc.contributor.researcheridAAH-1547-2021
dc.contributor.researcheridAAH-1468-2021
dc.date.accessioned2024-10-24T07:55:04Z
dc.date.available2024-10-24T07:55:04Z
dc.date.issued2023-09-01
dc.description.abstractWe consider the product sequences of the sequences (psi n(P)), (phi n(P)), and (omega n(P)) (n is an element of N) of values of the translated division polynomials of an elliptic curve E/K evaluated at a point P is an element of E(K)2. We prove that these sequences are purely periodic when K is a finite field. Then we use p-adic properties of these sequences to obtain p-adic convergence of product of the Somos 4 and Somos 5 sequences.
dc.identifier.doi10.7169/facm/2038
dc.identifier.endpage75
dc.identifier.issn0208-6573
dc.identifier.issue1
dc.identifier.startpage55
dc.identifier.urihttps://doi.org/10.7169/facm/2038
dc.identifier.urihttps://hdl.handle.net/11452/46996
dc.identifier.volume69
dc.identifier.wos001078217200003
dc.indexed.wosWOS.ESCI
dc.language.isoen
dc.publisherWydawnictwo Naukowe Uam
dc.relation.journalFunctiones et Approximatio Commentarii Mathematici
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.relation.tubitak118F322
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectElliptic nets
dc.subjectPeriodicity
dc.subjectElliptic curves
dc.subjectTranslated division polynomials
dc.subjectSomos sequences
dc.subjectMathematics
dc.titleOn the product of translated division polynomials and somos sequences
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication6db39a60-7c04-4571-b528-8bee31473d4b
relation.isAuthorOfPublication48250e80-7b2a-4d52-9aa4-ea5c2e2ff62d
relation.isAuthorOfPublication.latestForDiscovery6db39a60-7c04-4571-b528-8bee31473d4b

Files

Collections