Publication:
A constructive method for the cycloidal normal free subgroups of finite index of hecke groups H (√2) AND H (√3)

dc.contributor.buuauthorDOĞAN, SETENAY
dc.contributor.buuauthorDEMİRCİ, MUSA
dc.contributor.buuauthorDemirci, Musa
dc.contributor.buuauthorCangül, İsmail Naci
dc.contributor.buuauthorCANGÜL, İSMAİL NACİ
dc.contributor.buuauthorBizim, Osman
dc.contributor.buuauthorBİZİM, OSMAN
dc.contributor.departmentBursa Uludağ Üniversitesi/Fen Edebiyat Fakültesi/Matematik Bölümü.
dc.contributor.orcid0000-0002-0700-5774
dc.contributor.researcheridA-6557-2018
dc.contributor.researcheridAAH-1468-2021
dc.contributor.researcheridAAH-9762-2021
dc.contributor.researcheridJ-3505-2017
dc.contributor.researcheridABA-6206-2020
dc.date.accessioned2024-09-28T12:59:52Z
dc.date.available2024-09-28T12:59:52Z
dc.date.issued2006-09-01
dc.description.abstractCycloidal subgrups of the modular group are studied in [8]. Here cycloidal free normal subgroups of Hecke groups are considered. It is found that when q equivalent to 2 ( mod 4), H ( lambda(q)) has no such subgroups. In all other cases the signatures of these subgroups are constructed by means of q-gons and their signatures are given.
dc.identifier.endpage436
dc.identifier.issn2304-7909
dc.identifier.issue3
dc.identifier.startpage429
dc.identifier.urihttps://hdl.handle.net/11452/45439
dc.identifier.volume1
dc.identifier.wos000420124700004
dc.indexed.wosWOS.ESCI
dc.language.isoen
dc.publisherAcad Sinica
dc.relation.bapF-2003/63
dc.relation.bapF-2004/40
dc.relation.journalBulletin Of The Institute Of Mathematics Academia Sinica New Series
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectCycloidal subgroups
dc.subjectHecke groups
dc.subjectPermutation method
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectMathematics
dc.titleA constructive method for the cycloidal normal free subgroups of finite index of hecke groups H (√2) AND H (√3)
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication939e5708-c157-458f-9a96-64c516b838b5
relation.isAuthorOfPublication601ef81f-9bdf-4a4a-9ac1-82a82260384d
relation.isAuthorOfPublication48250e80-7b2a-4d52-9aa4-ea5c2e2ff62d
relation.isAuthorOfPublication.latestForDiscovery939e5708-c157-458f-9a96-64c516b838b5

Files

Collections