Publication:
Discriminating drying method of tarhana using computer vision

dc.contributor.authorDeǧirmencioǧlu, Nurcan
dc.contributor.buuauthorKurtulmuş, Ferhat
dc.contributor.buuauthorGürbüz, Ozan
dc.contributor.departmentZiraat Fakültesi
dc.contributor.departmentZiraat Fakültesi
dc.contributor.departmentBiyosistem Mühendisliği Bölümü
dc.contributor.departmentGıda Mühendisliği Bölümü
dc.contributor.orcid0000-0001-7871-1628
dc.contributor.researcheridR-8053-2016
dc.contributor.researcheridK-1499-2019
dc.contributor.scopusid15848202900
dc.contributor.scopusid8528582100
dc.date.accessioned2024-02-15T06:20:43Z
dc.date.available2024-02-15T06:20:43Z
dc.date.issued2014-03-19
dc.description.abstractTarhana is a traditionally fermented wheat flour product of Turkey which has high nutritional value. A rapid and objective evaluation of tarhana quality by assessing the used drying method is important for producers and packaging companies. A computer vision method was developed to discriminate between drying methods of tarhana. Tarhana samples were prepared with three drying methods: sun dried, oven dried and microwave dried. An image acquisition station was constituted under artificial illumination. Different types of machine learning methods and feature selection methods were tested to find an effective system for the discrimination between drying methods of tarhana using visual texture features with different color components. Experimental results showed that the best accuracy rate (99.5%) was achieved with a K-nearest-neighbors classifier through the feature model based on stepwise discriminant analysis.
dc.identifier.citationKurtulmuş, F. vd. (2014). "Discriminating drying method of tarhana using computer vision". Journal of Food Process Engineering, 37(4), 362-374.
dc.identifier.endpage374
dc.identifier.issn0145-8876
dc.identifier.issn1745-4530
dc.identifier.issue4
dc.identifier.scopus2-s2.0-84904418804
dc.identifier.startpage362
dc.identifier.urihttps://doi.org/10.1111/jfpe.12092
dc.identifier.urihttps://onlinelibrary.wiley.com/doi/10.1111/jfpe.12092
dc.identifier.urihttps://hdl.handle.net/11452/39729
dc.identifier.volume37
dc.identifier.wos000339718300003
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherWiley
dc.relation.journalJournal of Food Process Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectColor texture features
dc.subjectTrees
dc.subjectHot air
dc.subjectProducts
dc.subjectFermentation
dc.subjectAlgorithm
dc.subjectClassification
dc.subjectInspection
dc.subjectFood
dc.subjectEngineering, chemical
dc.subjectFood science & technology
dc.subjectArtificial intelligence
dc.subjectComputer vision
dc.subjectLearning systems
dc.subjectDiscriminant analysis
dc.subjectIndustry
dc.subjectAcquisition station
dc.subjectVisual texture features
dc.subjectComputer vision system
dc.subjectStepwise discriminant analysis
dc.subjectFeature selection methods
dc.subjectPackaging companies
dc.subjectMachine learning methods
dc.subjectObjective evaluation
dc.subjectDrying
dc.subject.scopusBulgur; Cereals; Debranning
dc.subject.wosEngineering, chemical
dc.subject.wosFood science & technology
dc.titleDiscriminating drying method of tarhana using computer vision
dc.typeArticle
dc.wos.quartileQ3 (Food Science & Technology)
dc.wos.quartileQ4 (Engineering, Chemical)
dspace.entity.typePublication
local.contributor.departmentZiraat Fakültesi/Biyosistem Mühendisliği Bölümü
local.contributor.departmentZiraat Fakültesi/Gıda Mühendisliği Bölümü
local.indexed.atPubMed
local.indexed.atScopus

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: