Publication:
Thermodynamic optimization of stirling heat engine with methane gas using finite speed thermodynamic model

dc.contributor.authorMansuriya, Kıran
dc.contributor.authorRaja, Bansi D.
dc.contributor.authorYıldız, Ali Rıza
dc.contributor.authorMudgal, Anurag
dc.contributor.authorPatel, Vivek K.
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.departmentBursa Uludağ Üniversitesi/Mühendislik Fakültesi/Otomotiv Mühendisliği Bölümü
dc.contributor.orcid0000-0003-1790-6987
dc.contributor.researcheridF-7426-2011
dc.date.accessioned2024-06-03T12:28:10Z
dc.date.available2024-06-03T12:28:10Z
dc.date.issued2021-08-08
dc.description.abstractWith the daily rise in environmental issues due to the use of conventional fuels, researchers are motivated to use renewable energy sources. One of such waste heat and low-temperature differential driven energy sources is the Stirling engine. The performance of the Stirling engine can be improved by finding out the optimum operating and geometrical parameters with suitable working gas and thermal model. Based on this motivation, the current work focuses on the multiobjective optimization of the Stirling engine using the finite speed thermodynamic model and methane gas as the working fluid. Considering output power and pressure drop as two objective functions, the system is optimized using 11 geometrical and thermal design parameters. The optimization results are obtained in the form of the Pareto frontier. A sensitivity assessment is carried out to observe the decision variables, which are having a more sensitive effect on the optimization objectives. Optimization results reveal that 99.83% change in power output and 78% change in total pressure drop can take place in the two-dimensional optimization space. The optimal solution closest to the ideal solution has output power and pressure drop values as 12.31 kW and 22.76 kPa, respectively.
dc.identifier.doi10.1002/htj.22271
dc.identifier.eissn2688-4542
dc.identifier.endpage8172
dc.identifier.issn2688-4534
dc.identifier.issue8
dc.identifier.startpage8155
dc.identifier.urihttps://doi.org/10.1002/htj.22271
dc.identifier.urihttps://onlinelibrary.wiley.com/doi/10.1002/htj.22271
dc.identifier.urihttps://hdl.handle.net/11452/41682
dc.identifier.volume50
dc.identifier.wos000682865300001
dc.indexed.wosWOS.ESCI
dc.language.isoen
dc.publisherWiley
dc.relation.journalHeat Transfer
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectMultiobjective optimization
dc.subjectMaximized power
dc.subjectThermal-model
dc.subjectPerformance
dc.subjectSimulation
dc.subjectEfficiency
dc.subjectAlgorithm
dc.subjectFinite speed thermodynamic model
dc.subjectPower output
dc.subjectPressure drop
dc.subjectStirling heat engine
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectThermodynamics
dc.titleThermodynamic optimization of stirling heat engine with methane gas using finite speed thermodynamic model
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublication.latestForDiscovery89fd2b17-cb52-4f92-938d-a741587a848d

Files

Collections