Publication: Almost α-paracosymplectic manifolds
dc.contributor.author | Küpeli, Erken | |
dc.contributor.author | Dacko, P. | |
dc.contributor.author | Murathan, Cengiz | |
dc.contributor.buuauthor | Küpeli, Erken | |
dc.contributor.buuauthor | Dacko, P. | |
dc.contributor.buuauthor | MURATHAN, CENGİZHAN | |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü | |
dc.contributor.orcid | 0000-0003-3054-8213 | |
dc.contributor.researcherid | ABH-3658-2020 | |
dc.contributor.researcherid | ETS-4402-2022 | |
dc.contributor.researcherid | ESL-5172-2022 | |
dc.date.accessioned | 2024-08-02T07:19:57Z | |
dc.date.available | 2024-08-02T07:19:57Z | |
dc.date.issued | 2015-02-01 | |
dc.description.abstract | This paper is a complete study of almost alpha-paracosymplectic manifolds. Basic properties of such manifolds are obtained and general curvature identities are proved. The manifolds with para-Kaehler leaves are characterized. It is proved that, for dimensions greater than 3, almost alpha-paracosymplectic manifolds are locally conformal to almost paracosymplectic manifolds and locally D-homothetic to almost para-Kenmotsu manifolds. Furthermore, it is proved that characteristic (Reeb) vector field xi is harmonic on almost alpha-para-Kenmotsu manifold if and only if it is an eigenvector of the Ricci operator. It is showed that almost alpha-para-Kenmotsu (kappa, mu, nu)-space has para-Kaehler leaves. 3-dimensional almost alpha-para-Kenmotsu manifolds are classified. As an application, it is obtained that 3-dimensional almost alpha-para-Kenmotsu manifold is (kappa, mu, nu)-space on an every open and dense subset of the manifold if and only if Reeb vector field is harmonic. Furthermore, examples are constructed. | |
dc.identifier.doi | 10.1016/j.geomphys.2014.09.011 | |
dc.identifier.eissn | 1879-1662 | |
dc.identifier.endpage | 51 | |
dc.identifier.issn | 0393-0440 | |
dc.identifier.startpage | 30 | |
dc.identifier.uri | https://doi.org/10.1016/j.geomphys.2014.09.011 | |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S0393044014002149 | |
dc.identifier.uri | https://arxiv.org/pdf/1402.6930 | |
dc.identifier.uri | https://hdl.handle.net/11452/43655 | |
dc.identifier.volume | 88 | |
dc.identifier.wos | 000348087200003 | |
dc.indexed.wos | WOS.SCI | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.relation.journal | Journal of Geometry and Physics | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject | Vector-fields | |
dc.subject | Cosymplectic manifolds | |
dc.subject | Harmonicity | |
dc.subject | Almost paracontact metric manifold | |
dc.subject | Almost paracosymplectic manifold | |
dc.subject | Almost para-kenmotsu manifold | |
dc.subject | Para-kaehler manifold | |
dc.subject | Science & technology | |
dc.subject | Physical sciences | |
dc.subject | Mathematics, applied | |
dc.subject | Mathematics | |
dc.subject | Physics, mathematical | |
dc.subject | Physics | |
dc.title | Almost α-paracosymplectic manifolds | |
dc.type | Article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 84bde251-4d9e-4e01-bf1e-600b240a5d09 | |
relation.isAuthorOfPublication.latestForDiscovery | 84bde251-4d9e-4e01-bf1e-600b240a5d09 |
Files
Original bundle
1 - 1 of 1