Publication:
Thermal vibration of perforated nanobeams with deformable boundary conditions via nonlocal strain gradient theory

dc.contributor.authorKafkas, Uğur
dc.contributor.authorGüçlü, Gökhan
dc.contributor.buuauthorUzun, Büşra
dc.contributor.buuauthorUZUN, BÜŞRA
dc.contributor.buuauthorYaylı, Mustafa Özgür
dc.contributor.buuauthorYAYLI, MUSTAFA ÖZGÜR
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.orcid0000-0002-7636-7170
dc.contributor.orcid0000-0003-2231-170X
dc.contributor.researcheridABE-6914-2020
dc.date.accessioned2024-09-23T05:55:52Z
dc.date.available2024-09-23T05:55:52Z
dc.date.issued2023-06-12
dc.description.abstractDue to nonlocal and strain gradient effects with rigid and deformable boundary conditions, the thermal vibration behavior of perforated nanobeams resting on a Winkler elastic foundation (WEF) is examined in this paper. The Stokes transformation and Fourier series have been used to achieve this goal and to determine the thermal vibration behavior under various boundary conditions, including deformable and non-deformable ones. The perforated nanobeams' boundary conditions are considered deformable, and the nonlocal strain gradient theory accounts for the size dependency. The problem is modeled as an eigenvalue problem. The effect of parameters such as the number of holes, elastic foundation, nonlocal and strain gradient, deformable boundaries and size on the solution is considered. The effects of various parameters, such as the length of the perforated beam, number of holes, filling ratio, thermal effect parameter, small-scale parameters and foundation parameter, on the thermal vibration behavior of the perforated nanobeam, are then illustrated using a set of numerical examples. As a result of the analysis, it was determined that the vibration frequency of the nanobeam was most affected by the changes in the dimensionless WEF parameter in the first mode and the changes in the internal length parameter when all modes were considered.
dc.identifier.doi10.1515/zna-2023-0088
dc.identifier.endpage701
dc.identifier.issn0932-0784
dc.identifier.issue8
dc.identifier.startpage681
dc.identifier.urihttps://doi.org/10.1515/zna-2023-0088
dc.identifier.urihttps://hdl.handle.net/11452/45012
dc.identifier.volume78
dc.identifier.wos001004276900001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWalter De Gruyter Gmbh
dc.relation.journalZeitschrift Fur Naturforschung Section A-a Journal Of Physical Sciences
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectBuckling analysis
dc.subjectWave-propagation
dc.subjectDynamic-analysis
dc.subjectElastic-foundation
dc.subjectBeams
dc.subjectBehavior
dc.subjectInstability
dc.subjectModels
dc.subjectFourier series
dc.subjectNonlocal strain gradient theory
dc.subjectPerforated nanobeam
dc.subjectThermal vibration
dc.subjectWinkler elastic foundation
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectChemistry, physical
dc.subjectPhysics, multidisciplinary
dc.subjectChemistry
dc.subjectPhysics
dc.titleThermal vibration of perforated nanobeams with deformable boundary conditions via nonlocal strain gradient theory
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi
relation.isAuthorOfPublication9d931598-bdd6-4fdd-b625-909ec0444b5c
relation.isAuthorOfPublicationf9782842-abc1-42a9-a3c2-76a6464363be
relation.isAuthorOfPublication.latestForDiscovery9d931598-bdd6-4fdd-b625-909ec0444b5c

Files