Publication:
Estimates of energy consumption in Turkey using neural networks with the teaching-learning-based optimization algorithm

dc.contributor.authorUzlu, Ergun
dc.contributor.authorKankal, Murat
dc.contributor.authorDede, Tayfun
dc.contributor.buuauthorAkpınar, Adem
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentİnşaat Mühendisliği Bölümü
dc.contributor.orcid0000-0002-9042-6851
dc.contributor.researcheridAAC-6763-2019
dc.contributor.scopusid23026855400
dc.date.accessioned2022-08-23T07:36:02Z
dc.date.available2022-08-23T07:36:02Z
dc.date.issued2014-10-01
dc.description.abstractThe main objective of the present study was to apply the ANN (artificial neural network) model with the TLBO (teaching-learning-based optimization) algorithm to estimate energy consumption in Turkey. Gross domestic product, population, import, and export data were selected as independent variables in the model. Performances of the ANN-TLBO model and the classical back propagation-trained ANN model (ANN-BP (teaching learning-based optimization) model) were compared by using various error criteria to evaluate the model accuracy. Errors of the training and testing datasets showed that the ANN-TLBO model better predicted the energy consumption compared to the ANN-BP model. After determining the best configuration for the ANN-TLBO model, the energy consumption values for Turkey were predicted under three scenarios. The forecasted results were compared between scenarios and with projections by the MENR (Ministry of Energy and Natural Resources). Compared to the MENR projections, all of the analyzed scenarios gave lower estimates of energy consumption and predicted that Turkey's energy consumption would vary between 142.7 and 158.0 Mtoe (million tons of oil equivalent) in 2020.
dc.identifier.citationUzlu, E. vd .(2014). "Estimates of energy consumption in Turkey using neural networks with the teaching-learning-based optimization algorithm". Energy, 75, Special Issue, 295-303.
dc.identifier.endpage303
dc.identifier.issn0360-5442
dc.identifier.issn1873-6785
dc.identifier.issueSpecial Issue
dc.identifier.scopus2-s2.0-84908069278
dc.identifier.startpage295
dc.identifier.urihttps://doi.org/10.1016/j.energy.2014.07.078
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0360544214009116
dc.identifier.urihttp://hdl.handle.net/11452/28320
dc.identifier.volume75
dc.identifier.wos000343339900031
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherPergamon-Elsevier
dc.relation.collaborationYurt içi
dc.relation.journalEnergy
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectTeaching-learning-based optimization algorithm
dc.subjectEnergy consumption/demand
dc.subjectNeural networks
dc.subjectTurkey
dc.subjectParticle swarm optimization
dc.subjectParameter optimization
dc.subjectMultiobjective optimization
dc.subjectDemand estimation
dc.subjectColony algorithm
dc.subjectEconomic-growth
dc.subjectDesign
dc.subjectIntelligence
dc.subjectHydropower
dc.subjectPrediction
dc.subjectThermodynamics
dc.subjectEnergy & fuels
dc.subjectTurkey
dc.subjectEnergy utilization
dc.subjectLearning algorithms
dc.subjectNeural networks
dc.subjectOptimization
dc.subjectPopulation statistics
dc.subjectANN (artificial neural network)
dc.subjectClassical back-propagation
dc.subjectGross domestic products
dc.subjectIndependent variables
dc.subjectModel accuracy
dc.subjectTeaching-learning-based optimizations
dc.subjectTraining and testing
dc.subjectAlgorithm
dc.subjectData set
dc.subjectEnergy use
dc.subjectError analysis
dc.subjectEstimation method
dc.subjectNumerical model
dc.subjectBackpropagation
dc.subject.scopusArtificial Neural Network; Electricity Demand; Autoregressive Integrated Moving Average
dc.subject.wosThermodynamics
dc.subject.wosEnergy & fuels
dc.titleEstimates of energy consumption in Turkey using neural networks with the teaching-learning-based optimization algorithm
dc.typeArticle
dc.wos.quartileQ1
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/İnşaat Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: