Publication:
An enhanced artificial bee colony algorithm with solution acceptance rule and probabilistic multisearch

dc.contributor.buuauthorYurtkuran, Alkin
dc.contributor.buuauthorEmel, Erdal
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentEndüstri Mühendisliği Bölümü
dc.contributor.orcid0000-0002-9220-7353
dc.contributor.orcid0000-0003-2978-2811
dc.contributor.researcheridN-8691-2014
dc.contributor.researcheridAAH-1410-2021
dc.contributor.scopusid26031880400
dc.contributor.scopusid6602919521
dc.date.accessioned2023-03-07T10:52:51Z
dc.date.available2023-03-07T10:52:51Z
dc.date.issued2015-09-09
dc.description.abstractThe artificial bee colony (ABC) algorithm is a popular swarm based technique, which is inspired from the intelligent foraging behavior of honeybee swarms. This paper proposes a new variant of ABC algorithm, namely, enhanced ABC with solution acceptance rule and probabilistic multisearch (ABC-SA) to address global optimization problems. A new solution acceptance rule is proposed where, instead of greedy selection between old solution and new candidate solution, worse candidate solutions have a probability to be accepted. Additionally, the acceptance probability of worse candidates is nonlinearly decreased throughout the search process adaptively. Moreover, in order to improve the performance of the ABC and balance the intensification and diversification, a probabilistic multisearch strategy is presented. Three different search equations with distinctive characters are employed using predetermined search probabilities. By implementing a new solution acceptance rule and a probabilistic multisearch approach, the intensification and diversification performance of the ABC algorithm is improved. The proposed algorithmhas been tested on well-known benchmark functions of varying dimensions by comparing against novel ABC variants, as well as several recent state-of-the-art algorithms. Computational results show that the proposed ABC-SA outperforms other ABC variants and is superior to state-of-the-art algorithms proposed in the literature.
dc.identifier.citationYurtkuran, A. ve Emel, E. (2016). "An enhanced artificial bee colony algorithm with solution acceptance rule and probabilistic multisearch". Computational Intelligence and Neuroscience, 2016.
dc.identifier.issn1687-5265
dc.identifier.issn1687-5273
dc.identifier.pubmed26819591
dc.identifier.scopus2-s2.0-84954427990
dc.identifier.urihttps://doi.org/10.1155/2016/8085953
dc.identifier.urihttps://www.hindawi.com/journals/cin/2016/8085953/
dc.identifier.urihttp://hdl.handle.net/11452/31395
dc.identifier.volume2016
dc.identifier.wos000368277100001
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherHindawi
dc.relation.journalComputational Intelligence and Neuroscience
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMathematical & computational biology
dc.subjectNeurosciences & neurology
dc.subjectParticle swarm optimizer
dc.subjectGlobal optimization
dc.subjectDifferential evolution
dc.subjectSearch
dc.subjectEvolutionary algorithms
dc.subjectGlobal optimization
dc.subjectOptimization
dc.subjectProbability
dc.subjectArtificial bee colony algorithms
dc.subjectArtificial bee colony algorithms (ABC)
dc.subjectBenchmark functions
dc.subjectComputational results
dc.subjectForaging behaviors
dc.subjectGlobal optimization problems
dc.subjectIntensification and diversifications
dc.subjectState-of-the-art algorithms
dc.subjectAlgorithms
dc.subject.emtreeAlgorithm
dc.subject.emtreeAnimal
dc.subject.emtreeArtificial intelligence
dc.subject.emtreeBee
dc.subject.emtreeComputer simulation
dc.subject.emtreeCrowding (area)
dc.subject.emtreePhysiology
dc.subject.emtreeProbability
dc.subject.emtreeSocial behavior
dc.subject.meshAlgorithms
dc.subject.meshAnimals
dc.subject.meshArtificial intelligence
dc.subject.meshBees
dc.subject.meshComputer simulation
dc.subject.meshCrowding
dc.subject.meshProbability
dc.subject.meshSocial behavior
dc.subject.scopusBees; Exploration and Exploitation; Colonies
dc.subject.wosMathematical & computational biology
dc.subject.wosNeurosciences
dc.titleAn enhanced artificial bee colony algorithm with solution acceptance rule and probabilistic multisearch
dc.typeArticle
dc.wos.quartileQ3 (Mathematical & computational biology)
dc.wos.quartileQ4 (Neurosciences)
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Endüstri Mühendisliği Bölümü
local.indexed.atPubMed
local.indexed.atWOS

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Yurtkuran_Emel_2016.pdf
Size:
783.09 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: