Publication:
The integer sequence B = Bn(P, Q) with parameters P and Q

dc.contributor.authorKoçapınar, Canan
dc.contributor.authorÖzkoç, Arzu
dc.contributor.authorTekcan, Ahmet
dc.contributor.buuauthorTEKCAN, AHMET
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Matematik Bölümü
dc.contributor.researcheridAAH-8518-2021
dc.date.accessioned2024-08-06T07:04:46Z
dc.date.available2024-08-06T07:04:46Z
dc.date.issued2015-07-01
dc.description.abstractIn this work, we first prove that every prime number p equivalent to 1 (mod 4) can be written of the form P-2-4Q with two positive integers P and Q, and then we define the sequence B-n(P, Q) to be B-0 = 2, B-1 = P and B-n = P Bn-1 - QB(n-2) for n >= 2 and derive some algebraic identities on it. Also we formulate the limit of cross ratio for four consecutive numbers B-n, Bn+1, Bn+2 and Bn+3.
dc.identifier.endpage200
dc.identifier.issn0381-7032
dc.identifier.startpage187
dc.identifier.urihttps://hdl.handle.net/11452/43738
dc.identifier.volume121
dc.identifier.wos000357759400016
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherCharles Babbage Res Ctr
dc.relation.journalArs Combinatoria
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectFibonacci
dc.subjectLucas
dc.subjectPell numbers
dc.subjectBinet's formula
dc.subjectCross-ratio
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectMathematics
dc.titleThe integer sequence B = Bn(P, Q) with parameters P and Q
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication17944028-a562-4782-b38f-cb890c6f31bf
relation.isAuthorOfPublication.latestForDiscovery17944028-a562-4782-b38f-cb890c6f31bf

Files

Collections