Publication: The integer sequence B = Bn(P, Q) with parameters P and Q
dc.contributor.author | Koçapınar, Canan | |
dc.contributor.author | Özkoç, Arzu | |
dc.contributor.author | Tekcan, Ahmet | |
dc.contributor.buuauthor | TEKCAN, AHMET | |
dc.contributor.department | Uludağ Üniversitesi/Mühendislik Fakültesi/Matematik Bölümü | |
dc.contributor.researcherid | AAH-8518-2021 | |
dc.date.accessioned | 2024-08-06T07:04:46Z | |
dc.date.available | 2024-08-06T07:04:46Z | |
dc.date.issued | 2015-07-01 | |
dc.description.abstract | In this work, we first prove that every prime number p equivalent to 1 (mod 4) can be written of the form P-2-4Q with two positive integers P and Q, and then we define the sequence B-n(P, Q) to be B-0 = 2, B-1 = P and B-n = P Bn-1 - QB(n-2) for n >= 2 and derive some algebraic identities on it. Also we formulate the limit of cross ratio for four consecutive numbers B-n, Bn+1, Bn+2 and Bn+3. | |
dc.identifier.endpage | 200 | |
dc.identifier.issn | 0381-7032 | |
dc.identifier.startpage | 187 | |
dc.identifier.uri | https://hdl.handle.net/11452/43738 | |
dc.identifier.volume | 121 | |
dc.identifier.wos | 000357759400016 | |
dc.indexed.wos | WOS.SCI | |
dc.language.iso | en | |
dc.publisher | Charles Babbage Res Ctr | |
dc.relation.journal | Ars Combinatoria | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Fibonacci | |
dc.subject | Lucas | |
dc.subject | Pell numbers | |
dc.subject | Binet's formula | |
dc.subject | Cross-ratio | |
dc.subject | Science & technology | |
dc.subject | Physical sciences | |
dc.subject | Mathematics | |
dc.title | The integer sequence B = Bn(P, Q) with parameters P and Q | |
dc.type | Article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 17944028-a562-4782-b38f-cb890c6f31bf | |
relation.isAuthorOfPublication.latestForDiscovery | 17944028-a562-4782-b38f-cb890c6f31bf |