Publication: On the cycles of indefinite quadratic forms and cycles of ideals II
dc.contributor.author | Tekcan, Ahmet | |
dc.contributor.buuauthor | TEKCAN, AHMET | |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü | |
dc.contributor.researcherid | AAH-8518-2021 | |
dc.date.accessioned | 2024-09-27T10:01:47Z | |
dc.date.available | 2024-09-27T10:01:47Z | |
dc.date.issued | 2010-01-01 | |
dc.description.abstract | Let P and Q be two positive integers such that P < Q and let D = P-2 + Q(2) be a positive non- square integer. In the first section, we give some preliminaries from binary quadratic forms and quadratic ideals. In the second section, we show that given an ideal I = [Q, P + root D], there exists an indefinite symmetric quadratic form F-I = (Q, 2P,-Q) of discriminant 4 D which corresponds to I. We prove that I is always reduced, and so is F-I. Further, we prove that the cycle of F-I can be obtained using the cycle of I. | |
dc.identifier.eissn | 0219-175X | |
dc.identifier.endpage | 192 | |
dc.identifier.issn | 0129-2021 | |
dc.identifier.issue | 1 | |
dc.identifier.startpage | 185 | |
dc.identifier.uri | https://hdl.handle.net/11452/45395 | |
dc.identifier.volume | 34 | |
dc.identifier.wos | 000217212100019 | |
dc.indexed.wos | WOS.ESCI | |
dc.language.iso | en | |
dc.publisher | Southeast Asian Mathematical Soc-seams | |
dc.relation.journal | Southeast Asian Bulletin of Mathematics | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Quadratic forms | |
dc.subject | Cycles of forms | |
dc.subject | Ideals | |
dc.subject | Cycles of ideals | |
dc.subject | Science & technology | |
dc.subject | Physical sciences | |
dc.subject | Mathematics | |
dc.title | On the cycles of indefinite quadratic forms and cycles of ideals II | |
dc.type | Article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 17944028-a562-4782-b38f-cb890c6f31bf | |
relation.isAuthorOfPublication.latestForDiscovery | 17944028-a562-4782-b38f-cb890c6f31bf |