Publication:
Hybridised differential evolution and equilibrium optimiser with learning parameters for mechanical and aircraft wing design

dc.contributor.authorWansasueb, Kittinan
dc.contributor.authorPanmanee, Sorasak
dc.contributor.authorPanagant, Natee
dc.contributor.authorPholdee, Nantiwat
dc.contributor.authorBureerat, Sujin
dc.contributor.buuauthorYıldız, Ali Rıza
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.departmentBursa Uludağ Üniversitesi/Mühendislik Fakültesi/Makina Mühendisliği Bölümü.
dc.contributor.researcheridF-7426-2011
dc.date.accessioned2024-11-08T12:48:24Z
dc.date.available2024-11-08T12:48:24Z
dc.date.issued2022-01-10
dc.description.abstractMetaheuristics (MHs) have been widely used for aeroelastic optimisation of aircraft wings and other types of aircraft structures. Using such methods offers some advantages e.g. flexibility for coding, robustness, global optimisation capability, and a derivative-free feature. Moreover, unconventional design problems can be posed when using metaheuristics. This paper proposes a new hybrid algorithm, named HDEEO-LP, with a learning control parameter for aeroelastic optimisation. The new optimiser is obtained from hybridising differential evolution and the recently invented equilibrium optimisation, while a learning scheme for control parameter tuning is integrated. The new method is tested against a number of established and recently invented MHs, such as a grey wolf optimiser (GWO), a salp swarm algorithm (SSA), an equilibrium optimiser (EO), an artificial bee colony (ABC), teaching-learning based optimisation (TLBO), water cycle algorithm (WCA), self-adaptive spherical search algorithm (SASS) using the CEC-RW-2020 test suite and the Goland wing aeroelastic optimisation. The results reveal that the proposed hybrid algorithm is among the top performers.
dc.description.sponsorshipDefence Technology Institute
dc.description.sponsorshipThailand Research Fund (TRF) PHD/0182/2559
dc.description.sponsorshipThailand Research Found RTA6180010
dc.identifier.doi10.1016/j.knosys.2021.107955
dc.identifier.issn0950-7051
dc.identifier.urihttps://doi.org/10.1016/j.knosys.2021.107955
dc.identifier.urihttps://hdl.handle.net/11452/47653
dc.identifier.volume239
dc.identifier.wos000788633300015
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherElsevier
dc.relation.journalKnowledge-based Systems
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectTruss optimization
dc.subjectAlgorithm
dc.subjectComposite
dc.subjectPerformance
dc.subjectElement
dc.subjectSearch
dc.subjectCode
dc.subjectSelf-adaptive optimisation algorithm
dc.subjectOptimisation algorithm
dc.subjectAeroelastic optimisation
dc.subjectGoland wing
dc.subjectFlutter speed
dc.subjectMetaheuristics
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectComputer science, artificial intelligence
dc.subjectComputer science
dc.titleHybridised differential evolution and equilibrium optimiser with learning parameters for mechanical and aircraft wing design
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublication.latestForDiscovery89fd2b17-cb52-4f92-938d-a741587a848d

Files

Collections