Publication:
A simple machine learning approach for preoperative diagnosis of esophageal burns after caustic substance ingestion in children

dc.contributor.authorAydın, Emrah
dc.contributor.authorKhanmammadova, Narmina
dc.contributor.authorAslanyürek, Birol
dc.contributor.authorUrgancı, Nafiye
dc.contributor.authorUsta, Merve
dc.contributor.authorParlak, Ayşe
dc.contributor.authorKaya, Şeymanur
dc.contributor.authorGürpınar, Arif Nuri
dc.contributor.authorSekmenli, Tamer
dc.contributor.authorSarıkaya, Mehmet
dc.contributor.authorSıkı, Fatma Özcan
dc.contributor.authorAteş, Ufuk
dc.contributor.authorÇakmak, Murat
dc.contributor.authorÖztaş, Tulin
dc.contributor.buuauthorPARLAK, AYŞE
dc.contributor.buuauthorKAYA, ŞEYMANUR
dc.contributor.buuauthorGÜRPINAR, ARİF NURİ
dc.contributor.departmentUludağ Üniversitesi/Tıp Fakültesi/Çocuk Cerrahisi Anabilim Dalı
dc.contributor.researcheridAAH-6766-2021
dc.contributor.researcheridJUI-0139-2023
dc.contributor.researcheridAAI-3658-2021
dc.date.accessioned2024-11-22T06:48:51Z
dc.date.available2024-11-22T06:48:51Z
dc.date.issued2023-12-13
dc.description.abstractPurposeThe unresolved debate about the management of corrosive ingestion is a major problem both for the patients and healthcare systems. This study aims to demonstrate the presence and the severity of the esophageal burn after caustic substance ingestion can be predicted with complete blood count parameters.MethodsA multicenter, national, retrospective cohort study was performed on all caustic substance cases between 2000 and 2018. The classification learner toolbox of MATLAB version R2021a was used for the classification problem. Machine learning algorithms were used to forecast caustic burn.ResultsAmong 1839 patients, 142 patients (7.7%) had burns. The type of the caustic and the PDW (platelet distribution width) values were the most important predictors. In the acid group, the AUC (area under curve) value was 84% while it was 70% in the alkaline group. The external validation had 85.17% accuracy in the acidic group and 91.66% in the alkaline group.ConclusionsArtificial intelligence systems have a high potential to be used in the prediction of caustic burns in pediatric age groups.
dc.identifier.doi10.1007/s00383-023-05602-y
dc.identifier.eissn1437-9813
dc.identifier.issn0179-0358
dc.identifier.issue1
dc.identifier.urihttps://doi.org/10.1007/s00383-023-05602-y
dc.identifier.urihttps://link.springer.com/article/10.1007/s00383-023-05602-y
dc.identifier.urihttps://hdl.handle.net/11452/48335
dc.identifier.volume40
dc.identifier.wos001123631300001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherSpringer
dc.relation.journalPediatric Surgery International
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectDecision-support
dc.subjectManagement
dc.subjectEndoscopy
dc.subjectSymptoms
dc.subjectInjury
dc.subjectCaustic substance ingestion
dc.subjectMachine learning
dc.subjectArtificial intelligence
dc.subjectChildren
dc.subjectScience & technology
dc.subjectLife sciences & biomedicine
dc.subjectPediatrics
dc.subjectSurgery
dc.titleA simple machine learning approach for preoperative diagnosis of esophageal burns after caustic substance ingestion in children
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication1e3759a3-e0af-4b8d-80b4-f5fd3c639f30
relation.isAuthorOfPublication31363871-925f-4605-9935-980273d461ce
relation.isAuthorOfPublication215b27da-52ca-4b43-93cc-dc6b04a92818
relation.isAuthorOfPublication.latestForDiscovery1e3759a3-e0af-4b8d-80b4-f5fd3c639f30

Files

Collections