Publication:
Identification of wiener systems with recursive Gauss-Seidel algorithm

dc.contributor.authorHatun, Metin
dc.contributor.buuauthorHATUN, METİN
dc.contributor.departmentElektrik Elektronik Mühendisliği Bölümü
dc.contributor.orcid0000-0003-0279-5508
dc.contributor.researcheridAAH-2199-2021
dc.date.accessioned2024-10-30T06:46:52Z
dc.date.available2024-10-30T06:46:52Z
dc.date.issued2023-01-01
dc.description.abstractThe Recursive Gauss-Seidel (RGS) algorithm is presented that is implemented in a one-step Gauss-Seidel iteration for the identification of Wiener output error systems. The RGS algorithm has lower processing intensity than the popular Recursive Least Squares (RLS) algorithm due to its implementation using one-step Gauss-Seidel iteration in a sampling interval. The noise-free output samples in the data vector used for implementation of the RGS algorithm are estimated using an auxiliary model. Also, a stochastic convergence analysis is presented, and it is shown that the presented auxiliary model-based RGS algorithm gives unbiased parameter estimates even if the measurement noise is coloured. Finally, the effectiveness of the RGS algorithm is verified and compared with the equivalent RLS algorithm by computer simulations.
dc.identifier.doi10.5755/j02.eie.35119
dc.identifier.endpage10
dc.identifier.issn1392-1215
dc.identifier.issue5
dc.identifier.startpage4
dc.identifier.urihttps://doi.org/10.5755/j02.eie.35119
dc.identifier.urihttps://hdl.handle.net/11452/47159
dc.identifier.urihttps://eejournal.ktu.lt/index.php/elt/article/view/35119
dc.identifier.volume29
dc.identifier.wos001111548600009
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherKaunas Univ Technology
dc.relation.journalElektronika Ir Elektrotechnika
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectSquares parameter-estimation
dc.subjectModel-predictive control
dc.subjectNonlinear-systems
dc.subjectIterative identification
dc.subjectAdaptive-control
dc.subjectStochastic gradient
dc.subjectAuxiliary model
dc.subjectGauss-seidel
dc.subjectRecursive estimation
dc.subjectSystem identification
dc.subjectWiener system
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectEngineering, electrical & electronic
dc.subjectEngineering
dc.titleIdentification of wiener systems with recursive Gauss-Seidel algorithm
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentElektrik Elektronik Mühendisliği Bölümü
relation.isAuthorOfPublication3246dabb-5191-486d-9e80-1426e896153c
relation.isAuthorOfPublication.latestForDiscovery3246dabb-5191-486d-9e80-1426e896153c

Files

Collections