Publication:
Deep learning based vehicle make-model classification

dc.contributor.authorKurkova, V.
dc.contributor.authorManolopoulos, Y.
dc.contributor.authorHammer, B.
dc.contributor.authorIliadis, L.
dc.contributor.authorMaglogiannis, I.
dc.contributor.buuauthorSatar, Burak
dc.contributor.buuauthorDirik, Ahmet Emir
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentBilgisayar Mühendisliği Bölümü
dc.contributor.departmentElektrik Elektronik Mühendisliği Bölümü
dc.contributor.orcid0000-0002-6200-1717
dc.contributor.researcheridK-6977-2012
dc.contributor.scopusid57204183877
dc.contributor.scopusid23033658100
dc.date.accessioned2023-11-10T11:24:56Z
dc.date.available2023-11-10T11:24:56Z
dc.date.issued2018
dc.descriptionBu çalışma, 04-07 Ekim 2018 tarihlerinde Rhodes[Yunanistan]’da düzenlenen 27. International Conference on Artificial Neural Networks (ICANN) Kongresi‘nde bildiri olarak sunulmuştur.
dc.description.abstractThis paper studies the problem of vehicle make & model classification. Some of the main challenges are reaching high classification accuracy and reducing the annotation time of the images. To address these problems, we have created a fine-grained database using online vehicle marketplaces of Turkey. A pipeline is proposed to combine an SSD (Single Shot Multibox Detector) model with a CNN (Convolutional Neural Network) model to train on the database. In the pipeline, we first detect the vehicles by following an algorithm which reduces the time for annotation. Then, we feed them into the CNN model. It is reached approximately 4% better classification accuracy result than using a conventional CNN model. Next, we propose to use the detected vehicles as ground truth bounding box (GTBB) of the images and feed them into an SSD model in another pipeline. At this stage, it is reached reasonable classification accuracy result without using perfectly shaped GTBB. Lastly, an application is implemented in a use case by using our proposed pipelines which detects the unauthorized vehicles by comparing their license plate numbers and make & models. It is assumed that license plates are readable.
dc.identifier.citationSatar, B. ve Dirik, A. E. (2018). ''Deep learning based vehicle make-model classification''. ed. K. Kurkova vd. Lecture Notes in Computer Science, Artificial Neural Networks and Machine Learning – ICANN 2018, 11141(Part III), 544-553.
dc.identifier.endpage553
dc.identifier.isbn978-3-030-01424-7
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.issuePart III
dc.identifier.scopus2-s2.0-85054801490
dc.identifier.startpage544
dc.identifier.urihttps://doi.org/10.1007/978-3-030-01424-7_53
dc.identifier.urihttps://link.springer.com/chapter/10.1007/978-3-030-01424-7_53
dc.identifier.urihttp://hdl.handle.net/11452/34844
dc.identifier.volume11141
dc.identifier.wos000463340000053
dc.indexed.wosCPCIS
dc.language.isoen
dc.publisherSpringer
dc.relation.journalLecture Notes in Computer Science, Artificial Neural Networks and Machine Learning – ICANN 2018
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectComputer science
dc.subjectDeep learning
dc.subjectVehicle
dc.subjectModel
dc.subjectClassification
dc.subjectCNN
dc.subjectResNet
dc.subjectDetection
dc.subjectSSD
dc.subjectFraud
dc.subjectLicense plate
dc.subjectClassification (of information)
dc.subjectError detection
dc.subjectLicense plates (automobile)
dc.subjectModels
dc.subjectNeural networks
dc.subjectPipelines
dc.subjectVehicles
dc.subjectBounding box
dc.subjectClassification accuracy
dc.subjectConvolutional neural network
dc.subjectFine grained
dc.subjectFraud
dc.subjectModel classification
dc.subjectDeep learning
dc.subjectSingle shots
dc.subject.scopusObject Detection; Deep Learning; IOU
dc.subject.wosComputer science, artificial intelligence
dc.titleDeep learning based vehicle make-model classification
dc.typeProceedings Paper
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Elektrik Elektronik Mühendisliği Bölümü
local.contributor.departmentMühendislik Fakültesi/Bilgisayar Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Satar_Dirik_2020.pdf
Size:
80.76 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: