Publication:
Some new jensen-mercer type integral inequalities via fractional operators

dc.contributor.authorKorus, Peter
dc.contributor.authorValdes, Juan Eduardo Napoles
dc.contributor.buuauthorBayraktar, Bahtiyar
dc.contributor.buuauthorBAYRAKTAR, BAHTİYAR
dc.contributor.departmentBursa Uludağ Üniversitesi/Eğitim Fakültesi.
dc.contributor.orcid0000-0001-7594-8291
dc.contributor.researcheridABI-7823-2020
dc.date.accessioned2024-11-01T07:45:18Z
dc.date.available2024-11-01T07:45:18Z
dc.date.issued2023-06-01
dc.description.abstractIn this study, we present new variants of the Hermite-Hadamard inequality via non-conformable fractional integrals. These inequalities are proven for convex functions and differentiable functions whose derivatives in absolute value are generally convex. Our main results are established using the classical Jensen-Mercer inequality and its variants for (h,m)-convex modified functions proven in this paper. In addition to showing that our results support previously known results from the literature, we provide examples of their application.
dc.identifier.doi10.3390/axioms12060517
dc.identifier.issue6
dc.identifier.urihttps://doi.org/10.3390/axioms12060517
dc.identifier.urihttps://hdl.handle.net/11452/47299
dc.identifier.volume12
dc.identifier.wos001033331600001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherMdpi
dc.relation.journalAxioms
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectRefinements
dc.subjectConvex functions
dc.subject(h, m)-convex functions
dc.subjectJensen-mercer inequality
dc.subjectHermite-hadamard inequality
dc.subjectHlder inequality, power mean inequality
dc.subjectNon-conformable fractional operators
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectMathematics, applied
dc.subjectMathematics
dc.titleSome new jensen-mercer type integral inequalities via fractional operators
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication4d1a94ce-504e-499e-91e8-689abbf37041
relation.isAuthorOfPublication.latestForDiscovery4d1a94ce-504e-499e-91e8-689abbf37041

Files

Collections