Publication:
Tangentially cubic submanifolds of Em

dc.contributor.authorÖztürk, Günay
dc.contributor.authorBayram, Bengü Kılıç
dc.contributor.authorArslan, Kadri
dc.contributor.buuauthorARSLAN, KADRİ
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü
dc.contributor.researcheridAAG-8775-2021
dc.date.accessioned2024-10-14T11:25:15Z
dc.date.available2024-10-14T11:25:15Z
dc.date.issued2010-10-01
dc.description.abstractIn the present study we consider the submanifold M of E-m satisfying the condition Delta H, e(i) = 0, where H is the mean curvature of M and e(i) is an element of TM. We call such submanifolds tangentially cubic. We proved that every null 2- type submanifold M of E-m is tangentially cubic. Further, we prove that the pointed helical geodesic surfaces of E-5 with constant Gaussian curvature are tangentially cubic.
dc.identifier.endpage117
dc.identifier.issn1307-5624
dc.identifier.issue2
dc.identifier.startpage112
dc.identifier.urihttps://hdl.handle.net/11452/46368
dc.identifier.volume3
dc.identifier.wos000439096900010
dc.indexed.wosWOS.ESCI
dc.language.isoen
dc.publisherInt Electronic Journal Geometry
dc.relation.journalInternational Electronic Journal of Geometry
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectBiharmonic surfaces
dc.subjectTangentially cubic surfaces
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectMathematics
dc.titleTangentially cubic submanifolds of Em
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication78a6d00b-f51c-4edc-9075-74a0f2803729
relation.isAuthorOfPublication.latestForDiscovery78a6d00b-f51c-4edc-9075-74a0f2803729

Files

Collections