Publication: Tangentially cubic submanifolds of Em
dc.contributor.author | Öztürk, Günay | |
dc.contributor.author | Bayram, Bengü Kılıç | |
dc.contributor.author | Arslan, Kadri | |
dc.contributor.buuauthor | ARSLAN, KADRİ | |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü | |
dc.contributor.researcherid | AAG-8775-2021 | |
dc.date.accessioned | 2024-10-14T11:25:15Z | |
dc.date.available | 2024-10-14T11:25:15Z | |
dc.date.issued | 2010-10-01 | |
dc.description.abstract | In the present study we consider the submanifold M of E-m satisfying the condition Delta H, e(i) = 0, where H is the mean curvature of M and e(i) is an element of TM. We call such submanifolds tangentially cubic. We proved that every null 2- type submanifold M of E-m is tangentially cubic. Further, we prove that the pointed helical geodesic surfaces of E-5 with constant Gaussian curvature are tangentially cubic. | |
dc.identifier.endpage | 117 | |
dc.identifier.issn | 1307-5624 | |
dc.identifier.issue | 2 | |
dc.identifier.startpage | 112 | |
dc.identifier.uri | https://hdl.handle.net/11452/46368 | |
dc.identifier.volume | 3 | |
dc.identifier.wos | 000439096900010 | |
dc.indexed.wos | WOS.ESCI | |
dc.language.iso | en | |
dc.publisher | Int Electronic Journal Geometry | |
dc.relation.journal | International Electronic Journal of Geometry | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.subject | Biharmonic surfaces | |
dc.subject | Tangentially cubic surfaces | |
dc.subject | Science & technology | |
dc.subject | Physical sciences | |
dc.subject | Mathematics | |
dc.title | Tangentially cubic submanifolds of Em | |
dc.type | Article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 78a6d00b-f51c-4edc-9075-74a0f2803729 | |
relation.isAuthorOfPublication.latestForDiscovery | 78a6d00b-f51c-4edc-9075-74a0f2803729 |