Publication:
A multi-strategy boosted prairie dog optimization algorithm for global optimization of heat exchangers

dc.contributor.authorMehtap, Pranav
dc.contributor.authorSait, Sadiq M.
dc.contributor.authorKumar, Sumit
dc.contributor.buuauthorYıldız, Ali Rıza
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.buuauthorGürses, Dildar
dc.contributor.buuauthorGÜRSES, DİLDAR
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentMakina Mühendisliği Bölümü
dc.contributor.researcheridJCN-8328-2023
dc.contributor.researcheridF-7426-2011
dc.date.accessioned2024-11-21T13:01:25Z
dc.date.available2024-11-21T13:01:25Z
dc.date.issued2023-07-05
dc.description.abstractIn this article, a new prairie dog optimization algorithm (PDOA) is analyzed to realize the optimum economic design of three well-known heat exchangers. These heat exchangers found numerous applications in industries and are an imperative part of entire thermal systems. Optimization of these heat exchangers includes knowledge of thermo-hydraulic designs, design parameters and critical constraints. Moreover, the cost factor is always a challenging task to optimize. Accordingly, total cost optimization, including initial and maintenance, has been achieved using multi strategy enhanced PDOA combining PDOA with Gaussian mutation and chaotic local search (MSPDOA). Shell and tube, fin-tube and plate-fin heat exchangers are a special class of heat exchangers that are utilized in many thermal heat recovery applications. Furthermore, numerical evidences are accomplished to confirm the prominence of the MSPDOA in terms of the statistical results. The obtained results were also compared with the algorithms in the literature. The comparison revealed the best performance of the MSPDOA compared to the rest of the algorithm. The article further suggests the adaptability of MSPDOA for various real-world engineering optimization cases.
dc.identifier.doi10.1515/mt-2023-0082
dc.identifier.endpage1404
dc.identifier.issn0025-5300
dc.identifier.issue9
dc.identifier.startpage1396
dc.identifier.urihttps://doi.org/10.1515/mt-2023-0082
dc.identifier.urihttps://hdl.handle.net/11452/48304
dc.identifier.volume65
dc.identifier.wos001024430400001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWalter De Gruyter Gmbh
dc.relation.journalMaterials Testing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectDesign optimization
dc.subjectRobust design
dc.subjectMetaheuristic algorithm
dc.subjectEconomic optimization
dc.subjectGenetic algorithm
dc.subjectSearch algorithm
dc.subjectTopology design
dc.subjectHybrid approach
dc.subjectCrashworthiness
dc.subjectParameters
dc.subjectHeat exchangers
dc.subjectMetaheuristics
dc.subjectPrairie dog optimization algorithm
dc.subjectThermal system optimizations
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectMaterials science, characterization & testing
dc.subjectMaterials science
dc.titleA multi-strategy boosted prairie dog optimization algorithm for global optimization of heat exchangers
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentGemlik Meslek Yüksekokulu
local.contributor.departmentMühendislik Fakültesi/Makina Mühendisliği Bölümü
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublication1af1d254-5397-464d-b47b-7ddcbaff8643
relation.isAuthorOfPublication.latestForDiscovery89fd2b17-cb52-4f92-938d-a741587a848d

Files

Collections