Publication:
A small fixed-wing UAV system identification using metaheuristics

dc.contributor.authorNonut, Apiwat
dc.contributor.authorKanokmedhakul, Yodsadej
dc.contributor.authorBureerat, Sujin
dc.contributor.authorKumar, Sumit
dc.contributor.authorTejani, Ghanshyam G.
dc.contributor.authorArtrit, Pramin
dc.contributor.authorYıldız, Ali Rıza
dc.contributor.authorPholdee, Nantiwat
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.departmentBursa Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü.
dc.contributor.researcheridF-7426-2011
dc.date.accessioned2024-11-08T08:40:28Z
dc.date.available2024-11-08T08:40:28Z
dc.date.issued2022-12-31
dc.description.abstractA novel method for system identification of small-scale fixed-wing Unmanned Aerial Vehicles (UAVs) using a metaheuristics (MHs) approach is proposed. This investigation splits the complex aerodynamic model of UAV into longitudinal and lateral dynamics sub-systems. The system identification optimisation problem is proposed to find the UAV aerodynamic and stability derivatives by minimizing the R-squared error between the measurement data and the flight dynamic model. Thirteen popular optimisation algorithms are applied for solving the proposed UAV system identification optimisation problem while each algorithm is tested for 10 independent optimisation runs. By performing the Freidman's rank test, statistical analysis of the experiment work was carried out while, based on the fitness value, each algorithm is ranked. The outcomes demonstrate the dominance of the L-SHADE algorithm, with mean R-square errors of 0.5465 and 0.0487 for longitudinal and lateral dynamics, respectively. It is considered superior to the other algorithms for this system identification problem.
dc.description.sponsorshipNational Research Council of Thailand (NRCT) - NRCT5-RSA63003-06
dc.description.sponsorshipKhon Kaen University - 621T114
dc.identifier.doi10.1080/23311916.2022.2114196
dc.identifier.issn2331-1916
dc.identifier.issue1
dc.identifier.urihttps://doi.org/10.1080/23311916.2022.2114196
dc.identifier.urihttps://www.tandfonline.com/doi/full/10.1080/23311916.2022.2114196
dc.identifier.urihttps://hdl.handle.net/11452/47623
dc.identifier.volume9
dc.identifier.wos000847653700001
dc.indexed.wosWOS.ESCI
dc.language.isoen
dc.publisherTaylor & Francis As
dc.relation.journalCogent Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectOptimization algorithm
dc.subjectParameter-estimation
dc.subjectSystem identification
dc.subjectUnmanned aerial vehicle
dc.subjectOptimisation
dc.subjectComputational fluid dynamics
dc.subjectAerodynamic
dc.subjectEngineering
dc.titleA small fixed-wing UAV system identification using metaheuristics
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublication.latestForDiscovery89fd2b17-cb52-4f92-938d-a741587a848d

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Yildiz_vd_2022.pdf
Size:
3.21 MB
Format:
Adobe Portable Document Format

Collections