Publication:
A nelder mead-infused info algorithm for optimization of mechanical design problems

dc.contributor.authorMehta, Pranav
dc.contributor.authorYıldız, Betül S.
dc.contributor.authorKumar, Sumit
dc.contributor.authorPholdee, Nantiwat
dc.contributor.authorSait, Sadiq M.
dc.contributor.authorPanagant, Natee
dc.contributor.authorBureerat, Sujin
dc.contributor.authorYıldız, Ali Rıza
dc.contributor.buuauthorYILDIZ, BETÜL SULTAN
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.departmentBursa Uludağ Üniversitesi/Mühendislik Fakültesi/Makine Mühendisliği Bölümü.
dc.contributor.researcheridAAL-9234-2020
dc.contributor.researcheridF-7426-2011
dc.date.accessioned2024-11-08T08:24:38Z
dc.date.available2024-11-08T08:24:38Z
dc.date.issued2022-08-26
dc.description.abstractNature-inspired metaheuristic algorithms have wide applications that have greater emphasis over the classical optimization techniques. The INFO algorithm is developed on the basis of the weighted mean of the vectors, which enhances the superior vector position that enables to get the global optimal solution. Moreover, it evaluates the fitness function within the updating stage, vectors combining, and local search stage. Accordingly, in the present article, a population-based algorithm named weighted mean of vectors (INFO) is hybridized with the Nelder-Mead algorithm (HINFO-NM) and adapted to optimize the standard benchmark function structural optimization of the vehicle suspension arm. This provides a superior convergence rate, prevention of trapping in the local search domain, and class balance between the exploration and exploitation phase. The pursued results suggest that the HINFO-NM algorithm is the robust optimizer that provides the best results compared to the rest of the algorithms. Moreover, the scalability of this algorithm can be realized by having the least standard deviation in the results. The HINFO-NM algorithm can be adopted in a wide range of optimization challenges by assuring superior results obtained in the present article.
dc.identifier.doi10.1515/mt-2022-0119
dc.identifier.endpage1182
dc.identifier.issn0025-5300
dc.identifier.issue8
dc.identifier.startpage1172
dc.identifier.urihttps://doi.org/10.1515/mt-2022-0119
dc.identifier.urihttps://www.degruyter.com/document/doi/10.1515/mt-2022-0119/html
dc.identifier.urihttps://hdl.handle.net/11452/47621
dc.identifier.volume64
dc.identifier.wos000835877200007
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherWalter De Gruyter Gmbh
dc.relation.journalMaterials Testing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectHybrid approach
dc.subjectSearch
dc.subjectHybrid algorithm
dc.subjectInfo
dc.subjectMechanical design
dc.subjectNelder-mead
dc.subjectStructural optimization
dc.subjectMaterials science
dc.titleA nelder mead-infused info algorithm for optimization of mechanical design problems
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublicatione544f464-5e4a-4fb5-a77a-957577c981c6
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublication.latestForDiscoverye544f464-5e4a-4fb5-a77a-957577c981c6

Files

Collections