Publication:
Detection of reactive allergens in long-distance transported pollen grains: Evidence from ambrosia

dc.contributor.authorCelenk, Sevcan
dc.contributor.buuauthorÇELENK, SEVCAN
dc.contributor.departmentFen Edebiyat Fakültesi
dc.contributor.departmentBiyoloji Bölümü
dc.contributor.departmentAerobiyoloji Laboratuvarı
dc.contributor.orcid0000-0003-4925-8902
dc.contributor.researcheridK-2981-2012
dc.date.accessioned2024-09-24T06:29:38Z
dc.date.available2024-09-24T06:29:38Z
dc.date.issued2019-07-15
dc.description.abstractThe pollen of Ambrosia artemisiifolia (ragweed) is an important aeroallergen. The plant originated from North America and, has spread worldwide in recent decades. Air masses can transport pollen grains far from their source region and episodes of long distance transported (LDT) of ragweed pollen have been reported. The allergenic properties of LDT pollen grains can be altered by humidity, temperature and UV radiation. The aims of the study are to detect the major allergen of ragweed (Amb a 1) in the atmosphere of uninfested areas and to compare daily Ambrosia sp. pollen grains with Amb a 1 amount per m(3) of air. Samples for allergen detection were collected by ChemVol (R) sampler. ChemVol (R) collects particles at 800 l/min and contains 2 impaction stages (PM > 10 mu m and 10 > PM > 2.5 mu m). Samples collected on to filters were obtained during a 63 day period in the year 2014. Amb a 1 was recorded on 54 days and pollen grains of ragweed on 43 days. Diurnal average Amb a 1 concentrations ranged between 0.29 and 263.3 pg per cubic meter of air and correlated positively with daily average ragweed pollen concentrations. The average seasonal Ambrosia pollen allergen potency was 2.57 pg Amb a 1/pollen. The air mass movement was simulated using the HYbrid Single-particle Lagrangian Integrated Trajectory (HYSPLIT) model and back-trajectory paths were computed for four episodes. The findings suggest that ragweed pollen allergens still survive after at least 48 h during transport over long distances from allochthonous regions and are therefore a potential trigger of allergic reactions even in areas where ragweed is not widely dispersed.
dc.identifier.doi10.1016/j.atmosenv.2019.04.040
dc.identifier.eissn1873-2844
dc.identifier.endpage219
dc.identifier.issn1352-2310
dc.identifier.startpage212
dc.identifier.urihttps://doi.org/10.1016/j.atmosenv.2019.04.040
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S1352231019302559
dc.identifier.urihttps://hdl.handle.net/11452/45107
dc.identifier.volume209
dc.identifier.wos000470945900020
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherElsevier
dc.relation.journalAtmospheric Environment
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.relation.tubitak114Z698
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectBet v 1
dc.subjectRagweed pollen
dc.subjectCommon ragweed
dc.subjectClimate-change
dc.subjectBirch pollen
dc.subjectSubpollen particles
dc.subjectTemporal variations
dc.subjectWall proteins
dc.subjectArtemisiifolia
dc.subjectRelease
dc.subjectAmb a 1
dc.subjectAmbrosia
dc.subjectLong-distance-transport
dc.subjectPollen allergen potency
dc.subjectRagweed pollen
dc.subjectScience & technology
dc.subjectLife sciences & biomedicine
dc.subjectPhysical sciences
dc.subjectEnvironmental sciences
dc.subjectMeteorology & atmospheric sciences
dc.titleDetection of reactive allergens in long-distance transported pollen grains: Evidence from ambrosia
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentFen Edebiyat Fakültesi/Biyoloji Bölümü/Aerobiyoloji Laboratuvarı
relation.isAuthorOfPublication287f5285-8e64-402e-a481-36aff1c24232
relation.isAuthorOfPublication.latestForDiscovery287f5285-8e64-402e-a481-36aff1c24232

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Çelenk_2019.pdf
Size:
1.71 MB
Format:
Adobe Portable Document Format

Collections