Publication:
A novel chaotic runge kutta optimization algorithm for solving constrained engineering problems

dc.contributor.authorYıldız, Betül Sultan
dc.contributor.authorMehta, Pranav
dc.contributor.authorPanagant, Natee
dc.contributor.authorMirjalili, Seyedali
dc.contributor.authorYıldız, Ali Riza
dc.contributor.buuauthorYILDIZ, BETÜL SULTAN
dc.contributor.buuauthorYILDIZ, ALİ RIZA
dc.contributor.departmentBursa Uludağ Üniversitesi/Makine Mühendisliği Bölümü
dc.contributor.departmentBursa Uludağ Üniversitesi/Mühendislik Fakültesi/Makina Mühendisliği Bölümü
dc.contributor.researcheridF-7426-2011
dc.contributor.researcheridAAL-9234-2020
dc.date.accessioned2024-10-30T07:44:31Z
dc.date.available2024-10-30T07:44:31Z
dc.date.issued2022-12-01
dc.description.abstractThis study proposes a novel hybrid metaheuristic optimization algorithm named chaotic Runge Kutta optimization (CRUN). In this study, 10 diverse chaotic maps are being incorporated with the base Runge Kutta optimization (RUN) algorithm to improve their performance. An imperative analysis was conducted to check CRUN's convergence proficiency, sustainability of critical constraints, and effectiveness. The proposed algorithm was tested on six well-known design engineering tasks, namely: gear train design, coupling with a bolted rim, pressure vessel design, Belleville spring, and vehicle brake-pedal optimization. The results demonstrate that CRUN is superior compared to state-of-the-art algorithms in the literature. So, in each case study, CRUN was superior to the rest of the algorithms and furnished the best-optimized parameters with the least deviation. In this study, 10 chaotic maps were enhanced with the base RUN algorithm. However, these chaotic maps improve the solution quality, prevent premature convergence, and yield the global optimized output. Accordingly, the proposed CRUN algorithm can also find superior aspects in various spectrums of managerial implications such as supply chain management, business models, fuzzy circuits, and management models.
dc.description.sponsorshipNational Research Council of Thailand (NRCT) - N42A650549
dc.identifier.doi10.1093/jcde/qwac113
dc.identifier.eissn2288-5048
dc.identifier.endpage2465
dc.identifier.issue6
dc.identifier.startpage2452
dc.identifier.urihttps://doi.org/10.1093/jcde/qwac113
dc.identifier.urihttps://academic.oup.com/jcde/article/9/6/2452/6815778
dc.identifier.urihttps://hdl.handle.net/11452/47161
dc.identifier.volume9
dc.identifier.wos000893169600001
dc.identifier.woshttps://research-repository.griffith.edu.au/server/api/core/bitstreams/60099c88-85a5-49cd-8d5e-9ec9ecc8040b/content
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherOxford Univ Press
dc.relation.journalJournal of Computational Design and Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectDifferential evolution
dc.subjectDesign optimization
dc.subjectSwarm intelligence
dc.subjectStructural design
dc.subjectHarmony search
dc.subjectHybrid metaheuristics
dc.subjectRunge kutta optimization algorithm
dc.subjectChaotic maps
dc.subjectMechanical design
dc.subjectBrake pedal
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectComputer science, interdisciplinary applications
dc.subjectEngineering, multidisciplinary
dc.subjectComputer science
dc.subjectEngineering
dc.titleA novel chaotic runge kutta optimization algorithm for solving constrained engineering problems
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublicatione544f464-5e4a-4fb5-a77a-957577c981c6
relation.isAuthorOfPublication89fd2b17-cb52-4f92-938d-a741587a848d
relation.isAuthorOfPublication.latestForDiscoverye544f464-5e4a-4fb5-a77a-957577c981c6

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Yıldız_vd_2022.pdf
Size:
2.69 MB
Format:
Adobe Portable Document Format

Collections