Publication:
Algebraic structure of graph operations in terms of degree sequences

dc.contributor.authorMishra, Vishnu Narayan
dc.contributor.authorDelen, Sadık
dc.contributor.buuauthorCangül, İsmail Naci
dc.contributor.buuauthorCANGÜL, İSMAİL NACİ
dc.contributor.departmentBursa Uludağ Üniversitesi/Fen Edebiyat Fakültesi/Matematik Bölümü.
dc.contributor.researcheridJ-3505-2017
dc.date.accessioned2024-09-16T07:13:36Z
dc.date.available2024-09-16T07:13:36Z
dc.date.issued2018-01-01
dc.description.abstractIn this paper, by means of the degree sequences (DS) of graphs and some graph theoretical and combinatorial methods, we determine the algebraic structure of the set of simple connected graphs according to two graph operations, namely join and Corona product. We shall conclude that in the case of join product, the set of graphs forms an abelian monoid whereas in the case of Corona product, this set is not even associative, it only satisfies two conditions, closeness and identity element. We also give a result on distributive law related to these two operations.
dc.identifier.endpage821
dc.identifier.issn2291-8639
dc.identifier.issue6
dc.identifier.startpage809
dc.identifier.urihttps://hdl.handle.net/11452/44763
dc.identifier.volume16
dc.identifier.wos000449200500003
dc.indexed.wosWOS.ESCI
dc.language.isoen
dc.publisherEtamaths Publ
dc.relation.journalInternational Journal Of Analysis And Applications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectGraph
dc.subjectDegree sequence
dc.subjectJoin
dc.subjectCorona product
dc.subjectGraph operation
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectMathematics
dc.titleAlgebraic structure of graph operations in terms of degree sequences
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication601ef81f-9bdf-4a4a-9ac1-82a82260384d
relation.isAuthorOfPublication.latestForDiscovery601ef81f-9bdf-4a4a-9ac1-82a82260384d

Files

Collections