Publication:
On the power values of the sum of three squares in arithmetic progression

dc.contributor.authorLE, Maohua
dc.contributor.authorSoydan, Gökhan
dc.contributor.buuauthorSOYDAN, GÖKHAN
dc.contributor.departmentBursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.
dc.contributor.researcheridM-9459-2017
dc.date.accessioned2024-09-23T11:25:24Z
dc.date.available2024-09-23T11:25:24Z
dc.date.issued2022-01-01
dc.description.abstractIn this paper, using a deep result on the existence of primitive divisors of Lehmer numbers due to Y. Bilu, G. Hanrot and P. M. Voutier, we first give an explicit formula for all positive integer solutions of the Diophantine equation (x-d)(2) +x(2)+ (x+d)(2) = y(n) (*), when n is an odd prime and d = p(r), p > 3, a prime. So this improves the results of the papers of A. Koutsianas and V. Patel [19] and A. Koutsianas [18]. Secondly, under the assumption of our first result, we prove that (*) has at most one solution (x, y). Next, for a general d, we prove the following two results: (i) if every odd prime divisor q of d satisfies q +/- 1 (mod 2n), then (*) has only the solution (x, y, d, n) = (21, 11, 2, 3), and (ii) if n > 228000 and d > 8 root 2, then all solutions (x,y) of (*) satisfy y(n) < 2(3/2)d(3).
dc.identifier.endpage150
dc.identifier.issn1331-0623
dc.identifier.issue2
dc.identifier.startpage137
dc.identifier.urihttps://hrcak.srce.hr/clanak/412334
dc.identifier.urihttps://hdl.handle.net/11452/45051
dc.identifier.volume27
dc.identifier.wos000887239000001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherUniv Osijek
dc.relation.journalMathematical Communications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectPerfect powers
dc.subjectPrimitive divisors
dc.subjectEquation (x
dc.subjectLucas
dc.subjectPolynomial diophantine equation
dc.subjectPower sums
dc.subjectPrimitive divisors of lehmer sequences
dc.subjectBaker's method
dc.subjectMathematics
dc.titleOn the power values of the sum of three squares in arithmetic progression
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication356f7af9-3f0f-4c82-8733-d98627634647
relation.isAuthorOfPublication.latestForDiscovery356f7af9-3f0f-4c82-8733-d98627634647

Files

Collections