Publication:
Fully invariant-extending modular lattices, and applications (I)

dc.contributor.authorAlbu, Toma
dc.contributor.authorKara, Yeliz
dc.contributor.authorTercan, Adnan
dc.contributor.buuauthorKARA ŞEN, YELİZ
dc.contributor.departmentBursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü
dc.contributor.orcid0000-0002-8001-6082
dc.contributor.researcheridAAG-8304-2021
dc.date.accessioned2024-07-17T06:24:50Z
dc.date.available2024-07-17T06:24:50Z
dc.date.issued2019-01-01
dc.description.abstractBased on the concept of a linear morphism of lattices, recently introduced in the literature, we introduce and investigate in this paper the latticial counterpart of the notion of a fully invariant-extending module. (C) 2018 Elsevier Inc. All rights reserved.
dc.identifier.doi10.1016/j.jalgebra.2018.08.036
dc.identifier.eissn1090-266X
dc.identifier.endpage222
dc.identifier.issn0021-8693
dc.identifier.startpage207
dc.identifier.urihttps://doi.org/10.1016/j.jalgebra.2018.08.036
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0021869318305635?via%3Dihub
dc.identifier.urihttps://hdl.handle.net/11452/43301
dc.identifier.volume517
dc.identifier.wos000449580000009
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherElsevier
dc.relation.journalJournal of Algebra
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.relation.tubitakTUBITAK
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectOsofsky-smith theorem
dc.subjectGrothendieck categories
dc.subjectTorsion theories
dc.subjectSummands
dc.subjectRings
dc.subjectModular lattice
dc.subjectUpper continuous lattice
dc.subjectLinear morphism of lattices
dc.subjectFully invariant submodule
dc.subjectFully invariant element
dc.subjectFully invariant-extending lattice
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectMathematics
dc.titleFully invariant-extending modular lattices, and applications (I)
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublicationcefc08b2-e6fe-4b0b-846e-f8d1b36b7066
relation.isAuthorOfPublication.latestForDiscoverycefc08b2-e6fe-4b0b-846e-f8d1b36b7066

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Yeliz_vd_2019.pdf
Size:
345.87 KB
Format:
Adobe Portable Document Format

Collections