Publication:
A note on terai's conjecture concerning primitive pythagorean triples

dc.contributor.authorLe, Maohua
dc.contributor.authorSoydan, Gökhan
dc.contributor.buuauthorSOYDAN, GÖKHAN
dc.contributor.departmentBursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü
dc.contributor.orcid0000-0002-6321-4132
dc.contributor.researcheridM-9459-2017
dc.date.accessioned2024-06-26T13:07:05Z
dc.date.available2024-06-26T13:07:05Z
dc.date.issued2021-01-01
dc.description.abstractLet f,g be positive integers such that f > g, gcd(f,g) =1 and f not equivalent to g (mod 2). In 1993, N. Terai conjectured that the equation x(2) + (f(2) - g(2))(y) = (f(2) + g(2))(z) has only one positive integer solution (x, y, z) = (2 fg, 2, 2). This is a problem that has not been solved yet. In this paper, using elementary number theory methods with some known results on higher Diophantine equations, we prove that if f = 2(r)s and g = 1, where r, s are positive integers satisfying 2 inverted iota s, r >= 2 and s < 2(r-)(1), then Terai's conjecture is true.
dc.identifier.doi10.15672/hujms.795889
dc.identifier.eissn2651-477X
dc.identifier.endpage917
dc.identifier.govdochttps://dergipark.org.tr/en/pub/hujms/issue/64436/795889
dc.identifier.issue4
dc.identifier.startpage911
dc.identifier.urihttps://doi.org/10.15672/hujms.795889
dc.identifier.urihttps://dergipark.org.tr/en/pub/hujms/issue/64436/795889
dc.identifier.urihttps://hdl.handle.net/11452/42460
dc.identifier.volume50
dc.identifier.wos000687954300001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherHacettepe Üniversitesi
dc.relation.journalHacettepe Matematik ve İstatistik Dergisi
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectPolynomial-exponential diophantine equation
dc.subjectGeneralized ramanujan-nagell equation
dc.subjectPrimitive pythagorean triple
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectMathematics
dc.subjectStatistics & probability
dc.titleA note on terai's conjecture concerning primitive pythagorean triples
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication356f7af9-3f0f-4c82-8733-d98627634647
relation.isAuthorOfPublication.latestForDiscovery356f7af9-3f0f-4c82-8733-d98627634647

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Soydan_ve_Le2021.pdf
Size:
174.28 KB
Format:
Adobe Portable Document Format

Collections