Publication:
Classification of phosphorus magnetic resonance spectroscopic imaging of brain tumors using support vector machine and logistic regression at 3T

dc.contributor.authorEr, Füsun
dc.contributor.authorHatay, Gökçe Hale
dc.contributor.authorYıldırım, Muhammed
dc.contributor.authorÖztürk , Esin Işık
dc.contributor.buuauthorÖkeer, Emre
dc.contributor.buuauthorHakyemez, Bahattin
dc.contributor.departmentTıp Fakültesi
dc.contributor.departmentRadyoloji Ana Bilim Dalı
dc.contributor.orcid0000-0002-3425-0740
dc.contributor.researcheridAAI-2318-2021
dc.contributor.scopusid56529606700
dc.contributor.scopusid6602527239
dc.date.accessioned2024-02-13T05:53:44Z
dc.date.available2024-02-13T05:53:44Z
dc.date.issued2014
dc.description.abstractThis study aims classification of phosphorus magnetic resonance spectroscopic imaging (P-31-MRSI) data of human brain tumors using machine-learning algorithms. The metabolite peak intensities and ratios were estimated for brain tumor and healthy P-31 MR spectra acquired at 3T. The spectra were classified based on metabolite characteristics using logistic regression and support vector machine. This study showed that machine learning could be successfully applied for classification of P-31-MR spectra of brain tumors. Future studies will measure the performance of classification algorithms for P-31-MRSI of brain tumors in a larger patient cohort.
dc.identifier.citationEr, F. C.. vd. (2014). "Classification of phosphorus magnetic resonance spectroscopic imaging of brain tumors using support vector machine and logistic regression at 3T". IEEE Engineering in Medicine and Biology Society Conference Proceedings, 2014 36. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014, 2392-2395.
dc.identifier.eissn1557-170X
dc.identifier.endpage2395
dc.identifier.isbn978-1-4244-7929-0
dc.identifier.pubmed25570471
dc.identifier.scopus2-s2.0-84929484373
dc.identifier.startpage2392
dc.identifier.urihttps://hdl.handle.net/11452/39639
dc.identifier.wos000350044702094
dc.indexed.wosCPCIS
dc.language.isoen
dc.publisherIEEE
dc.relation.collaborationYurt içi
dc.relation.collaborationYurt dışı
dc.relation.journalIEEE Engineering in Medicine and Biology Society Conference Proceedings, 2014 36. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectRadiaton
dc.subjectEngineering
dc.subjectArtificial intelligence
dc.subjectTumors
dc.subjectBrain
dc.subjectSupport vector machines
dc.subjectLearning algorithms
dc.subjectRegression analysis
dc.subjectMagnetic resonance spectroscopy
dc.subjectPhosphorus
dc.subjectMetabolites
dc.subjectBrain tumors
dc.subjectClassification algorithm
dc.subjectPeak intensity
dc.subjectHuman brain tumors
dc.subjectLogistic regressions
dc.subjectMagnetic resonance spectroscopic imaging
dc.subjectMagnetic resonance
dc.subject.emtreeAdult
dc.subject.emtreeBrain neoplasms
dc.subject.emtreeDiagnostic use
dc.subject.emtreeFemale
dc.subject.emtreeHuman
dc.subject.emtreeMiddle aged
dc.subject.emtreeNuclear magnetic resonance imaging
dc.subject.emtreeNuclear magnetic resonance spectroscopy
dc.subject.emtreeProcedures
dc.subject.emtreeReceiver operating characteristic
dc.subject.emtreeStatistical model
dc.subject.emtreeSupport vector machine
dc.subject.emtreePhosphorus
dc.subject.meshAdult
dc.subject.meshBrain neoplasms
dc.subject.meshFemale
dc.subject.meshHumans
dc.subject.meshLogistic models
dc.subject.meshMagnetic resonance imaging
dc.subject.meshMagnetic resonance spectroscopy
dc.subject.meshMiddle aged
dc.subject.meshPhosphorus
dc.subject.meshRoc curve
dc.subject.meshSupport vector machines
dc.subject.scopusCerebral Blood Volume; N Acetylaspartic Acid; Glioma
dc.subject.wosEngineering, biomedical
dc.subject.wosEngineering, electrical & electronic
dc.titleClassification of phosphorus magnetic resonance spectroscopic imaging of brain tumors using support vector machine and logistic regression at 3T
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentTıp Fakültesi/Radyoloji Ana Bilim Dalı
local.indexed.atWOS
local.indexed.atScopus

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: