Publication:
Invariant submanifolds of sasakian space forms

dc.contributor.authorYıldız, Ahmet
dc.contributor.buuauthorMurathan, Cengizhan
dc.contributor.buuauthorMURATHAN, CENGİZHAN
dc.contributor.departmentBursa Uludağ Üniversitesi/Fen Edebiyat Fakültesi.
dc.contributor.orcid0000-0002-9799-1781
dc.contributor.researcheridABE-8167-2020
dc.date.accessioned2024-09-17T05:16:27Z
dc.date.available2024-09-17T05:16:27Z
dc.date.issued2009-11-01
dc.description.abstractIn the present study, we consider isometric immersions f : M -> M (c) of (2n + 1)-dimensional invariant submanifold M2n+ 1 of (2m+ 1)dimensional Sasakian space form M (2m+ 1) of constant phi-sectional curvature c. We have shown that if f satisfies the curvature condition (R) over bar (X, Y) sigma = Q(g, sigma) then either M2n+ 1 is totally geodesic, or parallel to sigma parallel to(2) = 1/3 (2c+ n(c+ 1)), or parallel to sigma parallel to(2) (x) > 1/3 (2c + n(c + 1) at some point x of M2n+ 1. We also prove that R(X, Y).sigma = 1/2n Q(S, sigma) then either M2n+ 1 is totally geodesic, or parallel to sigma parallel to(2) = - 2/3 (1/2n T - 1/2 (n + 2)(c + 3) + 3), or parallel to sigma parallel to(2) (x) > - 2/3 (1/2n T (x) 1/2 (n + 2)(c + 3) + 3) at some point x of M2n+1.
dc.description.sponsorshipDumlupınar Üniversitesi 2004-9
dc.identifier.doi10.1007/s00022-009-0011-9
dc.identifier.endpage150
dc.identifier.issn0047-2468
dc.identifier.issue1-2
dc.identifier.startpage135
dc.identifier.urihttps://doi.org/10.1007/s00022-009-0011-9
dc.identifier.urihttps://hdl.handle.net/11452/44799
dc.identifier.volume95
dc.identifier.wos000211739700008
dc.indexed.wosWOS.ESCI
dc.language.isoen
dc.publisherSpringer Basel Ag
dc.relation.journalJournal Of Geometry
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectSasakian manifolds
dc.subjectPseudosymmetry type manifolds
dc.subjectSemisymmetric manifolds
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectMathematics
dc.titleInvariant submanifolds of sasakian space forms
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication84bde251-4d9e-4e01-bf1e-600b240a5d09
relation.isAuthorOfPublication.latestForDiscovery84bde251-4d9e-4e01-bf1e-600b240a5d09

Files

Collections