Publication:
Construction of cycloidal free subgroups of hecke groups of finite index

dc.contributor.authorYurttaş, Aysun
dc.contributor.authorDemirci, Musa
dc.contributor.authorÖzbay, Hatice
dc.contributor.authorÇapkın, Müge
dc.contributor.authorCangul, İsmail Naci
dc.contributor.buuauthorYURTTAŞ GÜNEŞ, AYSUN
dc.contributor.buuauthorDEMİRCİ, MUSA
dc.contributor.buuauthorÖzbay, Hatice
dc.contributor.buuauthorÇapkın, Müge
dc.contributor.buuauthorCANGÜL, İSMAİL NACİ
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.
dc.contributor.orcid0000-0002-0700-5774
dc.contributor.researcheridA-6557-2018
dc.contributor.researcheridJ-3505-2017
dc.contributor.researcheridAAG-8470-2021
dc.contributor.researcheridFRC-3631-2022
dc.contributor.researcheridEOF-7503-2022
dc.date.accessioned2024-11-12T06:27:39Z
dc.date.available2024-11-12T06:27:39Z
dc.date.issued2009-08-01
dc.description.abstractCycloidal subgroups of the modular group are studied in [7]. Cycloidal normal subgroups of the Hecke groups, which are generalisations of the modular group, are studied in [2]. Here we study cycloidal free subgroups of Hecke groups. These are subgroups with signature (g; infinity). Here these subgroups are given by their signatures for q = 4, 5, 6 first, and then for all q. It is found that when q equivalent to 2 mod 4, H(lambda(q)) has no cycloidal free subgroups.
dc.identifier.endpage201
dc.identifier.issn0972-5555
dc.identifier.issue2
dc.identifier.startpage191
dc.identifier.urihttps://hdl.handle.net/11452/47740
dc.identifier.volume14
dc.identifier.wos000421326900006
dc.indexed.wosWOS.ESCI
dc.language.isoen
dc.publisherPushpa Publishing House
dc.relation.bap2008-54
dc.relation.journalJp Journal of Algebra Number Theory and Applications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectHecke groups
dc.subjectCycloidal subgroup
dc.subjectParabolic class number
dc.subjectMathematics
dc.titleConstruction of cycloidal free subgroups of hecke groups of finite index
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublicatione2d46f0d-e1af-46a1-8816-bd2c471b2a3d
relation.isAuthorOfPublication939e5708-c157-458f-9a96-64c516b838b5
relation.isAuthorOfPublication601ef81f-9bdf-4a4a-9ac1-82a82260384d
relation.isAuthorOfPublication.latestForDiscoverye2d46f0d-e1af-46a1-8816-bd2c471b2a3d

Files

Collections