Publication:
A density and connectivity based decision rule for pattern classification

dc.contributor.authorİnkaya, Tülin
dc.contributor.buuauthorİNKAYA, TÜLİN
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentEndüstri Mühendisliği Bölümü
dc.contributor.orcid0000-0002-6260-0162
dc.contributor.researcheridAAH-2155-2021
dc.date.accessioned2024-08-09T11:32:48Z
dc.date.available2024-08-09T11:32:48Z
dc.date.issued2015-02-01
dc.description.abstractIn this paper we propose a novel neighborhood classifier, Surrounding Influence Region (SIR) decision rule. Traditional Nearest Neighbor (NN) classifier is a distance-based method, and it classifies a sample using a predefined number of neighbors. In this study neighbors of a sample are determined using not only the distance, but also the connectivity and density information. One of the well-known proximity graphs, Gabriel Graph, is used for this purpose. The neighborhood is unique for each sample. SIR decision rule is a parameter-free approach. Our experiments with artificial and real data sets show that the performance of the SIR decision rule is superior to the k-NN and Gabriel Graph neighbor (GGN) classifiers in most of the data sets.
dc.identifier.doi10.1016/j.eswa.2014.08.027
dc.identifier.eissn1873-6793
dc.identifier.endpage912
dc.identifier.issn0957-4174
dc.identifier.issue2
dc.identifier.startpage906
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2014.08.027
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0957417414005090
dc.identifier.urihttps://hdl.handle.net/11452/43859
dc.identifier.volume42
dc.identifier.wos000343854900019
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherElsevier
dc.relation.journalExpert Systems With Applications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectNearest-neighbor rule
dc.subjectGraphs
dc.subjectBayes
dc.subjectClassification
dc.subjectNearest neighbor
dc.subjectGabriel graph
dc.subjectDensity
dc.subjectConnectivity
dc.subjectScience & technology
dc.subjectTechnology
dc.subjectComputer science, artificial intelligence
dc.subjectEngineering, electrical & electronic
dc.subjectOperations research & management science
dc.subjectComputer science
dc.subjectEngineering
dc.titleA density and connectivity based decision rule for pattern classification
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Endüstri Mühendisliği Bölümü
relation.isAuthorOfPublication50789246-3e56-4752-a821-3ae9957be346
relation.isAuthorOfPublication.latestForDiscovery50789246-3e56-4752-a821-3ae9957be346

Files

Collections