Publication:
Soliton wave parameter estimation with the help of artificial neural network by using the experimental data carried out on the nonlinear transmission line

dc.contributor.buuauthorAKSOY, ABDULLAH
dc.contributor.buuauthorYENİKAYA, SİBEL
dc.contributor.buuauthorYenikaya, Sibel
dc.contributor.departmentBursa Uludağ Üniversitesi/Mühendislik Fakültesi/Elektrik ve Elektronik Bölümü.
dc.contributor.researcheridAAH-3945-2021
dc.date.accessioned2024-09-24T11:09:48Z
dc.date.available2024-09-24T11:09:48Z
dc.date.issued2023-02-15
dc.description.abstractIn this study, an artificial neural network (ANN) model is generated, which is used to estimate the output pa-rameters of soliton waves produced as a result of nonlinear transmission lines (NLTLs). Three different output parameters are acquired as a consequence of the experiments carried out utilizing the five various input pa-rameters that are set in the ANN-based study. Input parameters for NLTL designs with 116 different experiments; inductor (L), input voltage (Vi) value, number of nodes (n), capacitance (C(V)) and load resistance (RLoad) values. Output parameters values, which are maximum voltage (Vmax), center frequency (fcenter), and voltage modulation depth (VMD). Input and output data; 70 % is set aside for training, 15 % for validation and the remaining 15 % for testing. Training, validation, and testing steps are repeated for the output parameters, in which case more than 99 % correlation is found as a result of each operation. An absolute percentage error value is found for each output parameter. Moreover, Mean absolute percentage error (MAPE) is calculated for these output datasets. The data set is tested for the experimental studies carried out in the literature, and it is observed that there is a compliance of over 99 % for this situation.
dc.identifier.doi10.1016/j.chaos.2023.113226
dc.identifier.issn0960-0779
dc.identifier.urihttps://doi.org/10.1016/j.chaos.2023.113226
dc.identifier.urihttps://hdl.handle.net/11452/45136
dc.identifier.volume169
dc.identifier.wos000998251300001
dc.indexed.wosWOS.SCI
dc.language.isoen
dc.publisherPergamon-elsevier Science Ltd
dc.relation.journalChaos Solitons & Fractals
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectSimplest equation
dc.subjectGeneration
dc.subjectArtificial neural network(ann)
dc.subjectElectrical soliton
dc.subjectMicrowave soliton oscillator
dc.subjectNonlinear transmission lines(nltls)
dc.subjectSoliton
dc.subjectScience & technology
dc.subjectPhysical sciences
dc.subjectMathematics, interdisciplinary applications
dc.subjectPhysics, multidisciplinary
dc.subjectPhysics, mathematical
dc.subjectMathematics
dc.subjectPhysics
dc.titleSoliton wave parameter estimation with the help of artificial neural network by using the experimental data carried out on the nonlinear transmission line
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublicationed782bad-732c-4be7-b9df-9bd507fa8f5e
relation.isAuthorOfPublication.latestForDiscoveryed782bad-732c-4be7-b9df-9bd507fa8f5e

Files

Collections