Comparison of recent algorithms for many-objective optimisation of an automotive floor-frame
dc.contributor.author | Panagant, Natee | |
dc.contributor.author | Pholdee, Nantiwat | |
dc.contributor.author | Wansasueb, Kittinan | |
dc.contributor.author | Bureerat, Sujin | |
dc.contributor.author | Sait, Sadiq M. | |
dc.contributor.buuauthor | Yıldız, Ali Rıza | |
dc.contributor.department | Bursa Uludağ Üniversitesi/Mühendislik Fakültesi/Makina Mühendisliği/Konstrüksiyon ve İmalat Bölümü. | tr_TR |
dc.contributor.researcherid | F-7426-2011 | tr_TR |
dc.contributor.scopusid | 7102365439 | tr_TR |
dc.date.accessioned | 2024-02-13T06:33:27Z | |
dc.date.available | 2024-02-13T06:33:27Z | |
dc.date.issued | 2019 | |
dc.description.abstract | In this paper, an approach called real-code population-based incremental learning hybridised with adaptive differential evolution (RPBILADE) is proposed for solving many-objective automotive floor-frame optimisation problems. Adaptive strategies are developed and integrated into the algorithm. The purpose of these strategies is to select suitable control parameters for each stage of an optimisation run, in order to improve the search performance and consistency of the algorithm. The automotive floor-frame structures are considered as frame structures that can be analysed with finite element analysis. The design variables of the problems include topology, shape, and size. Ten optimisation runs using various optimisers are carried out on two many-objective automotive floor-frame optimisation problems. Twelve additional benchmark tests against all competitors are also performed to demonstrate the search performance of the proposed algorithm. RPBILADE provided better results than other recent optimisers for both the automotive floor-frame optimisation and benchmark problems. | en_US |
dc.description.sponsorship | Thailand Research Fund (TRF) -- RTA6180010 | en_US |
dc.identifier.citation | Panagant, N. vd. (2019). ''Comparison of recent algorithms for many-objective optimisation of an automotive floor-frame''. International Journal of Vehicle Desing, 80(2-4), Special Issue, 176-208. | en_US |
dc.identifier.endpage | 208 | tr_TR |
dc.identifier.issn | 0143-3369 | |
dc.identifier.issn | 1741-5314 | |
dc.identifier.issue | 2-4 | tr_TR |
dc.identifier.pubmed | ||
dc.identifier.scopus | 2-s2.0-85092306246 | tr_TR |
dc.identifier.startpage | 176 | tr_TR |
dc.identifier.uri | https://doi.org/10.1504/IJVD.2019.109863 | en_US |
dc.identifier.uri | https://hdl.handle.net/11452/39644 | en_US |
dc.identifier.volume | 80 | tr_TR |
dc.identifier.wos | 000576400300006 | |
dc.indexed.pubmed | ||
dc.indexed.scopus | Scopus | en_US |
dc.indexed.wos | SCIE | en_US |
dc.language.iso | en | en_US |
dc.publisher | Inderscience Enterprises | en_US |
dc.relation.collaboration | Yurt dışı | tr_TR |
dc.relation.collaboration | Sanayi | tr_TR |
dc.relation.journal | International Journal of Vehicle Desing | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Transportation | en_US |
dc.subject | Engineering | en_US |
dc.subject | Automotive floor-frame design | en_US |
dc.subject | Many-objective optimisation | en_US |
dc.subject | Population-based | en_US |
dc.subject | Incremental learning | en_US |
dc.subject | Differential evolution | en_US |
dc.subject | Adaptive algorithm | en_US |
dc.subject | Nondominated sorting approach | en_US |
dc.subject | Differential evolution | en_US |
dc.subject | Multiobjective optimization | en_US |
dc.subject | Topology optimization | en_US |
dc.subject | Multiple objectives | en_US |
dc.subject | Genetic algorithm | en_US |
dc.subject | Water cycle | en_US |
dc.subject | Grey wolf | en_US |
dc.subject | Ant lion | en_US |
dc.subject | Desing | en_US |
dc.subject | Benchmarking | en_US |
dc.subject | Evolutionary algorithms | en_US |
dc.subject | Optimization | en_US |
dc.subject | Structural frames | en_US |
dc.subject | Adaptive differential evolutions | en_US |
dc.subject | Adaptive strategy | en_US |
dc.subject | Bench-mark problems | en_US |
dc.subject | Control parameters | en_US |
dc.subject | Objective optimisation | en_US |
dc.subject | Optimisation problems | en_US |
dc.subject | Population based incremental learning | en_US |
dc.subject | Search performance | en_US |
dc.subject | Floors | en_US |
dc.subject.scopus | Decomposition; Evolutionary Multiobjective Optimization; Pareto Front | en_US |
dc.subject.wos | Engineering, mechanical | en_US |
dc.subject.wos | Transportation science & technology | en_US |
dc.title | Comparison of recent algorithms for many-objective optimisation of an automotive floor-frame | en_US |
dc.type | Article | en_US |
dc.wos.quartile | Q3 | en_US |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: