Comparison of recent algorithms for many-objective optimisation of an automotive floor-frame

dc.contributor.authorPanagant, Natee
dc.contributor.authorPholdee, Nantiwat
dc.contributor.authorWansasueb, Kittinan
dc.contributor.authorBureerat, Sujin
dc.contributor.authorSait, Sadiq M.
dc.contributor.buuauthorYıldız, Ali Rıza
dc.contributor.departmentBursa Uludağ Üniversitesi/Mühendislik Fakültesi/Makina Mühendisliği/Konstrüksiyon ve İmalat Bölümü.tr_TR
dc.contributor.researcheridF-7426-2011tr_TR
dc.contributor.scopusid7102365439tr_TR
dc.date.accessioned2024-02-13T06:33:27Z
dc.date.available2024-02-13T06:33:27Z
dc.date.issued2019
dc.description.abstractIn this paper, an approach called real-code population-based incremental learning hybridised with adaptive differential evolution (RPBILADE) is proposed for solving many-objective automotive floor-frame optimisation problems. Adaptive strategies are developed and integrated into the algorithm. The purpose of these strategies is to select suitable control parameters for each stage of an optimisation run, in order to improve the search performance and consistency of the algorithm. The automotive floor-frame structures are considered as frame structures that can be analysed with finite element analysis. The design variables of the problems include topology, shape, and size. Ten optimisation runs using various optimisers are carried out on two many-objective automotive floor-frame optimisation problems. Twelve additional benchmark tests against all competitors are also performed to demonstrate the search performance of the proposed algorithm. RPBILADE provided better results than other recent optimisers for both the automotive floor-frame optimisation and benchmark problems.en_US
dc.description.sponsorshipThailand Research Fund (TRF) -- RTA6180010en_US
dc.identifier.citationPanagant, N. vd. (2019). ''Comparison of recent algorithms for many-objective optimisation of an automotive floor-frame''. International Journal of Vehicle Desing, 80(2-4), Special Issue, 176-208.en_US
dc.identifier.endpage208tr_TR
dc.identifier.issn0143-3369
dc.identifier.issn1741-5314
dc.identifier.issue2-4tr_TR
dc.identifier.pubmed
dc.identifier.scopus2-s2.0-85092306246tr_TR
dc.identifier.startpage176tr_TR
dc.identifier.urihttps://doi.org/10.1504/IJVD.2019.109863en_US
dc.identifier.urihttps://hdl.handle.net/11452/39644en_US
dc.identifier.volume80tr_TR
dc.identifier.wos000576400300006
dc.indexed.pubmed
dc.indexed.scopusScopusen_US
dc.indexed.wosSCIEen_US
dc.language.isoenen_US
dc.publisherInderscience Enterprisesen_US
dc.relation.collaborationYurt dışıtr_TR
dc.relation.collaborationSanayitr_TR
dc.relation.journalInternational Journal of Vehicle Desingen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTransportationen_US
dc.subjectEngineeringen_US
dc.subjectAutomotive floor-frame designen_US
dc.subjectMany-objective optimisationen_US
dc.subjectPopulation-baseden_US
dc.subjectIncremental learningen_US
dc.subjectDifferential evolutionen_US
dc.subjectAdaptive algorithmen_US
dc.subjectNondominated sorting approachen_US
dc.subjectDifferential evolutionen_US
dc.subjectMultiobjective optimizationen_US
dc.subjectTopology optimizationen_US
dc.subjectMultiple objectivesen_US
dc.subjectGenetic algorithmen_US
dc.subjectWater cycleen_US
dc.subjectGrey wolfen_US
dc.subjectAnt lionen_US
dc.subjectDesingen_US
dc.subjectBenchmarkingen_US
dc.subjectEvolutionary algorithmsen_US
dc.subjectOptimizationen_US
dc.subjectStructural framesen_US
dc.subjectAdaptive differential evolutionsen_US
dc.subjectAdaptive strategyen_US
dc.subjectBench-mark problemsen_US
dc.subjectControl parametersen_US
dc.subjectObjective optimisationen_US
dc.subjectOptimisation problemsen_US
dc.subjectPopulation based incremental learningen_US
dc.subjectSearch performanceen_US
dc.subjectFloorsen_US
dc.subject.scopusDecomposition; Evolutionary Multiobjective Optimization; Pareto Fronten_US
dc.subject.wosEngineering, mechanicalen_US
dc.subject.wosTransportation science & technologyen_US
dc.titleComparison of recent algorithms for many-objective optimisation of an automotive floor-frameen_US
dc.typeArticleen_US
dc.wos.quartileQ3en_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections