Publication:
On the first Zagreb index and multiplicative Zagreb coindices of graphs

dc.contributor.authorDas, Kinkar Ch
dc.contributor.authorAkgüneş, Nihat
dc.contributor.authorÇevik, A. Sinan
dc.contributor.buuauthorTogan, Müge
dc.contributor.buuauthorYurttaş, Aysun
dc.contributor.buuauthorCangül, İsmail Naci
dc.contributor.departmentFen Edebiyat Fakültesi
dc.contributor.departmentMatematik Bölümü
dc.contributor.orcid0000-0002-0700-5774
dc.contributor.researcheridAAG-8470-2021
dc.contributor.researcheridABA-6206-2020
dc.contributor.researcheridJ-3505-2017
dc.contributor.scopusid54403978300
dc.contributor.scopusid37090056000
dc.contributor.scopusid57189022403
dc.date.accessioned2022-10-26T12:05:43Z
dc.date.available2022-10-26T12:05:43Z
dc.date.issued2014-02-10
dc.description.abstractFor a (molecular) graph G with vertex set V (G) and edge set E(G), the first Zagreb index of G is defined as M-1(G) = Sigma v(i is an element of V(G))d(C)(v(i))(2), where d(G) (v(i)) is the degree of vertex v(i), in G. Recently Xu et al. introduced two graphical invariants (Pi) over bar (1) (G) = Pi v(i)v(j is an element of E(G)) (dG (v(i))+dG (v(j))) and (Pi) over bar (2)(G) = Pi(vivj is an element of E(G)) (dG (v(i))+dG (v(j))) named as first multiplicative Zagreb coindex and second multiplicative Zagreb coindex, respectively. The Narumi-Katayama index of a graph G, denoted by NK(G), is equal to the product of the degrees of the vertices of G, that is, NK(G) = Pi(n)(i=1) d(G) (v(i)). The irregularity index t(G) of G is defined as the num=1 ber of distinct terms in the degree sequence of G. In this paper, we give some lower and upper bounds on the first Zagreb index M-1(G) of graphs and trees in terms of number of vertices, irregularity index, maximum degree, and characterize the extremal graphs. Moreover, we obtain some lower and upper bounds on the (first and second) multiplicative Zagreb coindices of graphs and characterize the extremal graphs. Finally, we present some relations between first Zagreb index and NarumiKatayama index, and (first and second) multiplicative Zagreb index and coindices of graphs.
dc.description.sponsorshipKorean Government - 2013R1A1A2009341
dc.description.sponsorshipNecmettin Erbakan Üniversitesi
dc.description.sponsorshipSelçuk Üniversitesi
dc.identifier.citationDas, K. C. vd. (2016). "On the first Zagreb index and multiplicative Zagreb coindices of graphs". Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica, 24(1), 153-176.
dc.identifier.endpage176
dc.identifier.issn1224-1784
dc.identifier.issn1844-0835
dc.identifier.issue1
dc.identifier.scopus2-s2.0-84962731881
dc.identifier.startpage153
dc.identifier.urihttps://doi.org/10.1515/auom-2016-0008
dc.identifier.urihttps://sciendo.com/article/10.1515/auom-2016-0008
dc.identifier.urihttp://hdl.handle.net/11452/29215
dc.identifier.volume24
dc.identifier.wos000374768100008
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherOvidius University
dc.relation.bapF-2015/23
dc.relation.bapF-2015/17
dc.relation.collaborationYurt içi
dc.relation.collaborationYurt dışı
dc.relation.journalAnalele Stiintifice ale Universitatii Ovidius Constanta, Seria Matematica
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.relation.tubitak221-Programme
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectMathematics
dc.subjectFirst Zagreb index
dc.subjectFirst and second multiplicative Zagreb coindex
dc.subjectNarumi-Katayama index
dc.subjectEccentric connectivity index
dc.subjectMolecular-orbitals
dc.subject.scopusGraph; Unicyclic Graph; Vertex Degree
dc.subject.wosMathematics, applied
dc.subject.wosMathematics
dc.titleOn the first Zagreb index and multiplicative Zagreb coindices of graphs
dc.typeArticle
dc.wos.quartileQ4
dspace.entity.typePublication
local.contributor.departmentFen Edebiyat Fakültesi/Matematik Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Togan_vd_2016.pdf
Size:
829.81 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: