Fuzzy logic based multi-objective optimization of active suspension system of 4x4 in-wheel motor driven electrical vehicle
Date
2021-10-06
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Bursa Uludağ Üniversitesi
Abstract
Bu tezde, 4x4 tekerlek içi motorlu bir elektrikli aracın doğrusal olmayan aktif süspansiyon sisteminin bulanık mantık tabanlı çok amaçlı optimizasyonu, süspansiyon sistemlerinin yuvarlanma açısı ve yük transferi gibi gerçek çalışma koşulları dikkate alınarak incelenmiştir. Bu bağlamda, on bir serbestlik derecesine sahip ikinci dereceden lastik ve kübik süspansiyon katılığına sahip doğrusal olmayan bir tam elektrikli araç modeli ve beş serbestlik dereceli bir koltuk-sürücü modeli oluşturulmuştur. Sürüş ve sağlık kriterlerini değerlendirmek için ISO 2731-1’de tanımlanan gereklilikler esas alınmıştır. Seçilen amaç fonksiyonları, weighted root mean square baş ivmesi, root mean square koltuk ivmesi, crest factor, titreşim doz değeri, root mean square baş ivmesinin root mean square koltuk ivmesine oranı, root mean square üst gövde ivmesinin root mean square koltuk ivmesine oranı, ve root mean square üst gövde ivmesidir. Bunlara ek olarak, nadiren incelenen rollover etkisi araştırılmıştır. Root mean square süpansiyon deplasmanı, root mean square tekerlek deplasmanı, root mean square tekerlek içi motor deplasmanı ve yuvarlanma açısı kısıtlar olarak seçilmiştir. Optimizasyon NSGA-II algoritması ile gerçekleştirilmiştir. Pasif sistem için tasarım değişkenleri; süspansiyon, tekerlek içi motor ve koltuğun yay katılıkları ve amortisör sönüm katsayılarıdır. Ardından, en iyi sürüş konforu ve sağlık kriterini sağlamak için proportional derivative kontrolcü ile birleştirilmiş bir bulanık mantık kontrolcü optimize edilmiştir. Sunulan optimizasyon sonuçlarının bulanık mantık kontrolcünün pasif sisteme karşılık olarak önemli bir gelişme gösterdiği ve yük transfer indeksinde devrilme koşuluyla ilgili olumsuz bir değişiklik göstermediği görülmektedir.
In this thesis, fuzzy logic based multi-objective optimization of a nonlinear active suspension system of 4x4 in-wheel motor-driven electrical vehicle is studied by considering real working conditions such as roll angle and load transfer of the suspension systems. In this regard, a nonlinear full electrical vehicle model with quadratic tire stiffness and cubic suspension stiffness with eleven degrees of freedom and a seat-driver model with five degrees of freedom implemented and optimized by the guidelines introduced in ISO 2731-1 to assess ride and health criteria. Selected objective functions are comprised of weighted root mean square head acceleration, root mean square seat acceleration, crest factor, vibration dose value, the amplitude of head root mean square acceleration to seat root mean square acceleration, the amplitude of upper torso root mean square acceleration to seat root mean square acceleration, and root mean square upper torso acceleration. In addition to these, rarely considered rollover effect was investigated. Root mean square suspension displacement, root mean square tire displacement, root mean square in-wheel motor displacement, and roll angle were selected as constraints. Optimization was carried out with NSGA-II algorithm. Design variables for the passive system are; stiffnesses and dampers of suspension, in-wheel motor, and seat. Then, a fuzzy logic controller coupled with a proportional derivative controller optimized for best ride comfort and health criterion. Presented optimization results demonstrated a significant improvement over the passive system with fuzzy logic controller, and the load transfer index showed no adverse change between models concerning the rollover condition.
In this thesis, fuzzy logic based multi-objective optimization of a nonlinear active suspension system of 4x4 in-wheel motor-driven electrical vehicle is studied by considering real working conditions such as roll angle and load transfer of the suspension systems. In this regard, a nonlinear full electrical vehicle model with quadratic tire stiffness and cubic suspension stiffness with eleven degrees of freedom and a seat-driver model with five degrees of freedom implemented and optimized by the guidelines introduced in ISO 2731-1 to assess ride and health criteria. Selected objective functions are comprised of weighted root mean square head acceleration, root mean square seat acceleration, crest factor, vibration dose value, the amplitude of head root mean square acceleration to seat root mean square acceleration, the amplitude of upper torso root mean square acceleration to seat root mean square acceleration, and root mean square upper torso acceleration. In addition to these, rarely considered rollover effect was investigated. Root mean square suspension displacement, root mean square tire displacement, root mean square in-wheel motor displacement, and roll angle were selected as constraints. Optimization was carried out with NSGA-II algorithm. Design variables for the passive system are; stiffnesses and dampers of suspension, in-wheel motor, and seat. Then, a fuzzy logic controller coupled with a proportional derivative controller optimized for best ride comfort and health criterion. Presented optimization results demonstrated a significant improvement over the passive system with fuzzy logic controller, and the load transfer index showed no adverse change between models concerning the rollover condition.
Description
Keywords
Elektrikli araç, Tekerlek içi motor, Çok amaçlı optimizasyon, Genetik algoritma, Yuvarlanma etkisi, Electric vehicle, In-wheel motor, Multi-objective optimization, Genetic algorithm, Rollover effect
Citation
Bingül, Ö. (2021). Fuzzy logic based multi-objective optimization of active suspension system of 4x4 in-wheel motor driven electrical vehicle. Yayınlanmamış yüksek lisans tezi. Bursa Uludağ Üniversitesi Fen Bilimleri Enstitüsü.