Publication: Analysis approach to finite monoids
Date
Authors
Cangül, Naci İsmail
Authors
Çevik, Ahmet Sinan
Şimşek, Yılmaz
Advisor
Language
Type
Publisher:
Springer International Publishing
Journal Title
Journal ISSN
Volume Title
Abstract
In a previous paper by the authors, a new approach between algebra and analysis has been recently developed. In detail, it has been generally described how one can express some algebraic properties in terms of special generating functions. To continue the study of this approach, in here, we state and prove that the presentation which has the minimal number of generators of the split extension of two finite monogenic monoids has different sets of generating functions (such that the number of these functions is equal to the number of generators) that represent the exponent sums of the generating pictures of this presentation. This study can be thought of as a mixture of pure analysis, topology and geometry within the purposes of this journal.
Description
Source:
Keywords:
Keywords
Efficiency, p-Cockcroft property, Split extension, Generating functions, Stirling numbers, Array polynomials, Semidirect products, Derivation type, Bernoulli, Presentations, Euler
Citation
Çevik, A. S. vd. (2013). "Analysis approach to finite monoids". Fixed Point Theory and Applications, 1-18.