Deterrmining the minimal polynomial of cos(2π/n) over Q with Maple
No Thumbnail Available
Date
2012
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Inst Physics
Abstract
The number lambda(q) = 2cos pi/q, q is an element of N, q >= 3, appears in the study of Hecke groups which are Fuchsian groups, and in the study of regular polyhedra. There are many results about the minimal polynomial of this algebraic number and in some of these methods, the minimal polynomials of several algebraic numbers are used. Here we obtain the minimal polynomial of one of those numbers, cos(2 pi/n), over the field of rationals by means of the better known Chebycheff polynomials for odd q and give some of their properties. We calculated this minimal polynomial for n is an element of N by using the Maple language and classifying the numbers n is an element of N into different classes.
Description
Bu çalışma, 19-25 Eylül 2012 tarihleri arasında Kos[Yunanistan]’da düzenlenen International Conference of Numerical Analysis and Applied Mathematics (ICNAAM)’da bildiri olarak sunulmuştur.
Keywords
Mathematics, Physics
Citation
Özgür, B. vd. (2012). "Deterrmining the minimal polynomial of cos(2π/n) over Q with Maple". ed. T. E. Simos vd. AIP Conference Proceedings, Numerical Analysis and Applied Mathematics (ICNAAM 2012), 1479(1), 368-370.