Deterrmining the minimal polynomial of cos(2π/n) over Q with Maple

dc.contributor.authorSimos, T. E.
dc.contributor.authorPsihoyios, G.
dc.contributor.authorTsitouras, C.
dc.contributor.authorAnastassi, Z.
dc.contributor.buuauthorÖzgür, Birsen
dc.contributor.buuauthorYurttaş, Aysun
dc.contributor.buuauthorCangül, İsmail Naci
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.contributor.orcid0000-0002-0700-5774tr_TR
dc.contributor.researcheridAAG-8470-2021tr_TR
dc.contributor.researcheridJ-3505-2017tr_TR
dc.contributor.researcheridABA-6206-2020tr_TR
dc.contributor.researcheridABI-4127-2020tr_TR
dc.contributor.scopusid54403501400tr_TR
dc.contributor.scopusid37090056000tr_TR
dc.contributor.scopusid57189022403tr_TR
dc.date.accessioned2022-04-05T06:12:15Z
dc.date.available2022-04-05T06:12:15Z
dc.date.issued2012
dc.descriptionBu çalışma, 19-25 Eylül 2012 tarihleri arasında Kos[Yunanistan]’da düzenlenen International Conference of Numerical Analysis and Applied Mathematics (ICNAAM)’da bildiri olarak sunulmuştur.tr_TR
dc.description.abstractThe number lambda(q) = 2cos pi/q, q is an element of N, q >= 3, appears in the study of Hecke groups which are Fuchsian groups, and in the study of regular polyhedra. There are many results about the minimal polynomial of this algebraic number and in some of these methods, the minimal polynomials of several algebraic numbers are used. Here we obtain the minimal polynomial of one of those numbers, cos(2 pi/n), over the field of rationals by means of the better known Chebycheff polynomials for odd q and give some of their properties. We calculated this minimal polynomial for n is an element of N by using the Maple language and classifying the numbers n is an element of N into different classes.en_US
dc.description.sponsorshipEuropean Soc Computat Methods Sci, Engn & Technol (ESCMSET)en_US
dc.description.sponsorshipR M Santilli Fdnen_US
dc.identifier.citationÖzgür, B. vd. (2012). "Deterrmining the minimal polynomial of cos(2π/n) over Q with Maple". ed. T. E. Simos vd. AIP Conference Proceedings, Numerical Analysis and Applied Mathematics (ICNAAM 2012), 1479(1), 368-370.en_US
dc.identifier.endpage370tr_TR
dc.identifier.isbn978-0-7354-1091-6
dc.identifier.issn0094-243X
dc.identifier.issue1tr_TR
dc.identifier.scopus2-s2.0-84883097669tr_TR
dc.identifier.startpage368tr_TR
dc.identifier.urihttps://doi.org/10.1063/1.4756140
dc.identifier.urihttps://aip.scitation.org/doi/abs/10.1063/1.4756140
dc.identifier.urihttp://hdl.handle.net/11452/25547
dc.identifier.volume1479tr_TR
dc.identifier.wos000310698100088
dc.indexed.scopusScopusen_US
dc.indexed.wosCPCISen_US
dc.language.isoenen_US
dc.publisherAmer Inst Physicsen_US
dc.relation.bap2012/15tr_TR
dc.relation.bap2012/19tr_TR
dc.relation.journalAIP Conference Proceedings, Numerical Analysis and Applied Mathematics (ICNAAM 2012)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararasıtr_TR
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMathematicsen_US
dc.subjectPhysicsen_US
dc.subject.scopusHecke Groups; Modular Forms; Congruence Subgroupsen_US
dc.subject.wosMathematics, applieden_US
dc.subject.wosPhysics, applieden_US
dc.titleDeterrmining the minimal polynomial of cos(2π/n) over Q with Mapleen_US
dc.typeProceedings Paper

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: