Classification of chestnuts according to moisture levels using impact sound analysis and machine learning

dc.contributor.authorKavdir, İsmail
dc.contributor.buuauthorKurtulmuş, Ferhat
dc.contributor.buuauthorÖztüfekçi, Sencer
dc.contributor.departmentUludağ Üniversitesi/Ziraat Fakültesi/Biyosistem Mühendisliği Bölümü.tr_TR
dc.contributor.departmentUludağ Üniversitesi/Ziraat Fakültesi/Toprak Bilimi ve Bitki Besleme Bölümü.tr_TR
dc.contributor.researcheridR-8053-2016tr_TR
dc.contributor.scopusid15848202900tr_TR
dc.contributor.scopusid57189374728tr_TR
dc.date.accessioned2024-01-16T11:17:48Z
dc.date.available2024-01-16T11:17:48Z
dc.date.issued2018-12
dc.description.abstractIn this study, a prototype system was designed, built and tested to classify chestnuts using impact sound signals and machine learning methods according to moisture contents. Briefly, the system consisted of a shotgun microphone, a sliding platform, an impact surface, a triggering system, a sound device and a computer. Sound signal data were acquired from 2028 chestnut samples with three different moisture levels. Acoustic signals from chestnut samples were filtered to alleviate negative effects of unwanted noise. Four machine learning classifiers using three different feature sets obtained from two feature groups applying feature reduction methods were trained and tested to classify pairs of chestnut moisture group categories as 35% versus 45%, 35% versus 55%, 45% versus 55% (classification with two outputs) and 35% versus 45% versus 55% (classification with three outputs), respectively. The highest classification success (88%) was achieved for the classification application category of 35 versus 55%.en_US
dc.identifier.citationKurtulmuş, F. vd. (2018). ''Classification of chestnuts according to moisture levels using impact sound analysis and machine learning''. Journal of Food Measurement and Characterization, 12(4), 2819-2834.en_US
dc.identifier.doihttps://doi.org/10.1007/s11694-018-9897-yen_US
dc.identifier.eissn2193-4134
dc.identifier.endpage2834tr_TR
dc.identifier.issn2193-4126
dc.identifier.issue4tr_TR
dc.identifier.scopus2-s2.0-85052098596tr_TR
dc.identifier.startpage2819tr_TR
dc.identifier.urihttps://link.springer.com/article/10.1007/s11694-018-9897-yen_US
dc.identifier.urihttps://hdl.handle.net/11452/39064en_US
dc.identifier.volume12tr_TR
dc.identifier.wos000452363700059
dc.indexed.pubmedPubMeden_US
dc.indexed.wosSCIEen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.collaborationYurt içitr_TR
dc.relation.journalJournal of Food Measurement and Characterizationen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.relation.tubitak114O783tr_TR
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFood science & technologyen_US
dc.subjectChestnut classificationen_US
dc.subjectMoisture levelen_US
dc.subjectImpact acousticsen_US
dc.subjectMachine learningen_US
dc.subjectPistachio nutsen_US
dc.subjectSelectionen_US
dc.subjectRecognitionen_US
dc.subjectPerformanceen_US
dc.subjectQualityen_US
dc.subjectAcoustic wavesen_US
dc.subjectArtificial intelligenceen_US
dc.subjectFruitsen_US
dc.subjectMoistureen_US
dc.subjectMoisture determinationen_US
dc.subjectAcoustic signalsen_US
dc.subjectFeature groupsen_US
dc.subjectFeature reductionen_US
dc.subjectPrototype systemen_US
dc.subjectMachine learning methods;en_US
dc.subjectTriggering systemsen_US
dc.subjectLearning systemsen_US
dc.subject.scopusAflatoxins; Seed; Corn Earsen_US
dc.subject.wosFood science & technologyen_US
dc.titleClassification of chestnuts according to moisture levels using impact sound analysis and machine learningen_US
dc.typeArticleen_US
dc.wos.quartileQ3 (Food science & technology)en_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections