Publication:
An adaptive artificial bee colony algorithm for global optimization

dc.contributor.buuauthorYurtkuran, Alkın
dc.contributor.buuauthorEmel, Erdal
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentEndüstri Mühendisliği Bölümü
dc.contributor.orcid0000-0002-9220-7353
dc.contributor.orcid0000-0003-2978-2811
dc.contributor.researcheridN-8691-2014
dc.contributor.researcheridAAH-1410-2021
dc.contributor.scopusid26031880400
dc.contributor.scopusid6602919521
dc.date.accessioned2022-06-06T08:26:07Z
dc.date.available2022-06-06T08:26:07Z
dc.date.issued2015-11-15
dc.description.abstractArtificial bee colony algorithm (ABC) is a recently introduced swarm based meta heuristic algorithm. ABC mimics the foraging behavior of honey bee swarms. Original ABC algorithm is known to have a poor exploitation performance. To remedy this problem, this paper proposes an adaptive artificial bee colony algorithm (AABC), which employs six different search rules that have been successfully used in the literature. Therefore, the AABC benefits from the use of different search and information sharing techniques within an overall search process. A probabilistic selection is applied to deterinine the search rule to be used in generating a candidate solution. The probability of selecting a given search rule is further updated according to its prior performance using the roulette wheel technique. Moreover, a ineinoly length is introduced corresponding to the maximum number of moves to reset selection probabilities. Experiments are conducted using well-known benchmark problems with varying dimensionality to compare AABC with other efficient ABC variants. Computational results reveal that the proposed AABC outperforms other novel ABC variants.
dc.identifier.citationYurtkuran, A. ve Emel, E. (2015). "An adaptive artificial bee colony algorithm for global optimization". Applied Mathematics and Computation, 271, 1004-1023.
dc.identifier.endpage1023
dc.identifier.issn0096-3003
dc.identifier.scopus2-s2.0-84944037689
dc.identifier.startpage1004
dc.identifier.urihttps://doi.org/10.1016/j.amc.2015.09.064
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0096300315013028
dc.identifier.urihttp://hdl.handle.net/11452/26908
dc.identifier.volume271
dc.identifier.wos000367819300018
dc.indexed.wosSCIE
dc.language.isoen
dc.publisherElsevier Science
dc.relation.journalApplied Mathematics and Computation
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectAdaptive search
dc.subjectArtificial bee colony algorithm
dc.subjectGlobal optimization
dc.subjectEfficient
dc.subjectEvolutionary algorithms
dc.subjectGlobal optimization
dc.subjectHeuristic algorithms
dc.subjectOptimization
dc.subjectAdaptive search
dc.subjectArtificial bee colony algorithms
dc.subjectArtificial bee colony algorithms (ABC)
dc.subjectBench-mark problems
dc.subjectComputational results
dc.subjectInformation sharing
dc.subjectMeta heuristic algorithm
dc.subjectSelection probabilities
dc.subjectAlgorithms
dc.subject.scopusBees; Exploration and Exploitation; Colonies
dc.subject.wosMathematics, applied
dc.titleAn adaptive artificial bee colony algorithm for global optimization
dc.typeArticle
dc.wos.quartileQ1
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Endüstri Mühendisliği Bölümü
local.indexed.atScopus
local.indexed.atWOS

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: