Lie symmetry analysis and exact solutions to N-coupled nonlinear Schrodinger’s equations with kerr and parabolic law nonlinearities

dc.contributor.authorTriki, Houria
dc.contributor.authorZhou, Qin
dc.contributor.authorMoshokoa, Seithuti P.
dc.contributor.authorUllah, Malik Zaka
dc.contributor.authorBiswas, Anjan
dc.contributor.authorBelic, Milivo
dc.contributor.buuauthorYıldırım, Yakup
dc.contributor.buuauthorYaşar, Emrullah
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.tr_TR
dc.contributor.orcid0000-0003-4443-3337tr_TR
dc.contributor.orcid0000-0003-4732-5753tr_TR
dc.contributor.researcheridHTO-9875-2023tr_TR
dc.contributor.researcheridAAG-9947-2021tr_TR
dc.contributor.scopusid56988856400tr_TR
dc.contributor.scopusid23471031300tr_TR
dc.date.accessioned2024-01-23T10:18:37Z
dc.date.available2024-01-23T10:18:37Z
dc.date.issued2018
dc.description.abstractThis paper addresses N-coupled nonlinear Schrodinger's equation with spatio-temporal dispersion for Kerr and parabolic laws of nonlinearity by the aid of Lie symmetry analysis. We systematically construct similarity reductions to the derived ordinary differential equations by Lie group analysis. These equations lead to exact solutions.en_US
dc.description.sponsorshipNational Science Foundation for Young Scientists of Wuhan Donghu Universityen_US
dc.description.sponsorshipDepartment of Mathematics and Statistics at Tshwane University of Technologyen_US
dc.description.sponsorshipSouth African National Foundation - 92052 IRF1202210126en_US
dc.description.sponsorshipNational Research Foundation of Korea Qatar National Research Fund (QNRF) - NPRP 8-028-1-001en_US
dc.description.sponsorshipNational Science Foundation for Young Scientists of Wuhan Donghu Universityen_US
dc.description.sponsorshipDepartment of Mathematics and Statistics at Tshwane University of Technologyen_US
dc.description.sponsorshipSouth African National Foundation - 92052 IRF1202210126en_US
dc.description.sponsorshipNational Research Foundation of Korea Qatar National Research Fund (QNRF) - NPRP 8-028-1-001en_US
dc.identifier.citationYıldırım, Y. vd. (2018). ''Lie symmetry analysis and exact solutions to N-coupled nonlinear Schrodinger’s equations with kerr and parabolic law nonlinearities''. Romanian Journal of Physics, 63(1-2).en_US
dc.identifier.doihttps://doi.org/http://milivojbelic.com/wp-content/uploads/uploadDocs/RJP-63-103-2018-1564595204.pdfen_US
dc.identifier.issn1221-146X
dc.identifier.issue1-2tr_TR
dc.identifier.scopus2-s2.0-85043777312tr_TR
dc.identifier.urihttps://hdl.handle.net/11452/39264en_US
dc.identifier.volume63tr_TR
dc.identifier.wos000428855200003
dc.indexed.pubmedPubMeden_US
dc.indexed.wosSCIEen_US
dc.language.isoenen_US
dc.publisherEditura Acad Romaneen_US
dc.relation.collaborationYurt dışıtr_TR
dc.relation.journalRomanian Journal of Physicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPhysicsen_US
dc.subjectLie symmetry analysisen_US
dc.subjectNonlinear Schrodinger's equationen_US
dc.subjectOptical solitonsen_US
dc.subjectSpatio-temporal dispersionen_US
dc.subjectOptical solitonsen_US
dc.subjectBirefringent fibersen_US
dc.subjectWavesen_US
dc.subject.scopusDarkness; Media Law; Periodic Solutionen_US
dc.subject.wosPhysics, multidisciplinaryen_US
dc.titleLie symmetry analysis and exact solutions to N-coupled nonlinear Schrodinger’s equations with kerr and parabolic law nonlinearitiesen_US
dc.typeArticleen_US
dc.wos.quartileQ3 (Physics, multidisciplinary)en_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections