On the Diophantine Equation x(2) 5(a) . 11(b) = y(n)
dc.contributor.author | Tzanakis, Nikos | |
dc.contributor.author | Soydan, Gökhan | |
dc.contributor.author | Kaczorowski, J. | |
dc.contributor.buuauthor | Cangül, İsmail Naci | |
dc.contributor.buuauthor | Demirci, Musa | |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü. | tr_TR |
dc.contributor.orcid | 0000-0002-0700-5774 | tr_TR |
dc.contributor.researcherid | J-3505-2017 | tr_TR |
dc.contributor.scopusid | 57189022403 | tr_TR |
dc.contributor.scopusid | 23566581100 | tr_TR |
dc.date.accessioned | 2022-04-20T08:56:39Z | |
dc.date.available | 2022-04-20T08:56:39Z | |
dc.date.issued | 2010 | |
dc.description.abstract | We give the complete solution (n, a, b, x, y) of the title equation when gcd(x,y) = 1, except for the case when xab is odd. Our main result is Theorem 1. | en_US |
dc.identifier.citation | Cangül, İ. N. vd. (2010). "On The Diophantine Equation x(2) 5(a) . 11(b) = y(n)". ed. J. Kaczorowski. Functiones et Approximatio: Commentarii Mathematici, 43, Part 2, 209-225. | en_US |
dc.identifier.endpage | 225 | tr_TR |
dc.identifier.scopus | 2-s2.0-84983393517 | tr_TR |
dc.identifier.startpage | 209 | tr_TR |
dc.identifier.uri | https://projecteuclid.org/journals/functiones-et-approximatio-commentarii-mathematici/volume-43/issue-2/On-the-diophantine-equation-x25acdot-11byn/10.7169/facm/1291903397.full | |
dc.identifier.uri | http://hdl.handle.net/11452/25901 | |
dc.identifier.volume | 43, Part 2 | en_US |
dc.identifier.wos | 000286369300007 | |
dc.indexed.scopus | Scopus | en_US |
dc.indexed.wos | BKCIS | en_US |
dc.language.iso | en | en_US |
dc.publisher | Wydawnictwo Naukowe | en_US |
dc.relation.collaboration | Yurt dışı | tr_TR |
dc.relation.collaboration | Sanayi | en_US |
dc.relation.journal | Functiones et Approximatio: Commentarii Mathematici | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Exponential diophantine equation | en_US |
dc.subject | S-integral points of an elliptic curve | en_US |
dc.subject | Thue-Mahler equation | en_US |
dc.subject | Lucas sequence | en_US |
dc.subject | Linear form in logarithms of algebraic numbers | en_US |
dc.subject | Power values | en_US |
dc.subject | Forms | en_US |
dc.subject | Mathematics | en_US |
dc.subject.scopus | Diophantine Equation; Number; Linear Forms in Logarithms | en_US |
dc.subject.wos | Mathematics | en_US |
dc.title | On the Diophantine Equation x(2) 5(a) . 11(b) = y(n) | en_US |
dc.type | Book Chapter | |
dc.type | Article |