Perturbed optical solitons with spatio-temporal dispersion in (2+1) -dimensions by extended Kudryashov method
dc.contributor.author | Adem, Abdullahi Rashid | |
dc.contributor.buuauthor | Yaşar, Emrullah | |
dc.contributor.buuauthor | Yıldırım, Yakup | |
dc.contributor.department | Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü. | tr_TR |
dc.contributor.orcid | 0000-0003-4732-5753 | |
dc.contributor.orcid | 0000-0003-4443-3337 | |
dc.contributor.researcherid | AAG-9947-2021 | |
dc.contributor.researcherid | HTO-9875-2023 | |
dc.contributor.scopusid | 23471031300 | tr_TR |
dc.contributor.scopusid | 56988856400 | tr_TR |
dc.date.accessioned | 2024-03-26T12:50:15Z | |
dc.date.available | 2024-03-26T12:50:15Z | |
dc.date.issued | 2018 | |
dc.description.abstract | This paper derives optical soliton solutions to perturbed nonlinear Schrodinger's equation with spatio-temporal dispersion in (2 + 1)-dimensions by the extended Kudryashov method which takes full advantages of the Bernoulli and Riccati equations to construct optical soliton solutions. There are four types of nonlinear fibers studied in this paper. They are quadratic-cubic law, anti-cubic law, cubic-quintic-septic law and triple-power law nonlinearity. With performing this algorithm, dark soliton, singular soliton and rational soliton are deduced. These solitons are important in optics. Besides, singular periodic solutions are revealed as a consequences of this approach and these are also listed. (C) 2017 Elsevier GmbH. All rights reserved. | en_US |
dc.identifier.citation | Yaşar, E. vd. (2018). ''Perturbed optical solitons with spatio-temporal dispersion in (2+1) -dimensions by extended Kudryashov method''. Optik, 158, 1-14. | en_US |
dc.identifier.doi | https://doi.org/10.1016/j.ijleo.2017.11.205 | |
dc.identifier.endpage | 14 | tr_TR |
dc.identifier.issn | 0030-4026 | |
dc.identifier.scopus | 2-s2.0-85037527807 | tr_TR |
dc.identifier.startpage | 1 | tr_TR |
dc.identifier.uri | https://www.sciencedirect.com/science/article/pii/S003040261731625X | |
dc.identifier.uri | https://hdl.handle.net/11452/40628 | |
dc.identifier.volume | 158 | tr_TR |
dc.identifier.wos | 000430761500001 | |
dc.indexed.scopus | Scopus | en_US |
dc.indexed.wos | SCIE | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.collaboration | Yurt dışı | tr_TR |
dc.relation.journal | Optik | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Optics | en_US |
dc.subject | Solitons | en_US |
dc.subject | Perturbation | en_US |
dc.subject | Extended Kudryashov's method | en_US |
dc.subject | Quadratic-cubic nonlinearity | en_US |
dc.subject | Inverse variational principle | en_US |
dc.subject | Power law nonlinearities | en_US |
dc.subject | Schrodingers equation | en_US |
dc.subject | 1-soliton solution | en_US |
dc.subject | Conversation-laws | en_US |
dc.subject | Dark | en_US |
dc.subject | Media | en_US |
dc.subject | (2+1)-Dimensions | en_US |
dc.subject | Control nonlinearities | en_US |
dc.subject | Dispersions | en_US |
dc.subject | Nonlinear equations | en_US |
dc.subject | Nonlinear optics | en_US |
dc.subject | Perturbation techniques | en_US |
dc.subject | Riccati equations | en_US |
dc.subject | Dark solitons | en_US |
dc.subject | Extended Kudryashov's method | en_US |
dc.subject | Non-linear fiber | en_US |
dc.subject | Optical soliton | en_US |
dc.subject | Periodic solution | en_US |
dc.subject | Perturbation | en_US |
dc.subject | Power-law nonlinearity | en_US |
dc.subject | Spatio temporal | en_US |
dc.subject | Solitons | en_US |
dc.subject.scopus | Darkness; Media Law; Periodic Solution | en_US |
dc.subject.wos | Optics | en_US |
dc.title | Perturbed optical solitons with spatio-temporal dispersion in (2+1) -dimensions by extended Kudryashov method | en_US |
dc.type | Article | en_US |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: