Olgunlaşmamış şeftali meyvesini doğal bahçe koşullarında alınmış görüntülerde görüntü işleme teknikleri ve yapay sınıflandırıcılarla saptayarak sayan algoritmaların geliştirilmesi.

dc.contributor.advisorVardar, Ali
dc.contributor.authorKurtulmuş, Ferhat
dc.contributor.departmentUludağ Üniversitesi/Fen Bilimleri Enstitüsü/Tarım Makineleri Anabilim Dalı.tr_TR
dc.date.accessioned2020-02-13T12:34:16Z
dc.date.available2020-02-13T12:34:16Z
dc.date.issued2012
dc.description.abstractBu çalışmanın amacı ülkemiz için ekonomik değeri yüksek olan şeftali meyvesinin verim haritalamasına yönelik olarak meyvenin erken gelişme döneminde ve doğal ortamından alınmış sıradan renkli görüntülerinden meyveleri tespit ederek sayabilecek algoritmaların geliştirilmesi ve en iyi algoritma performanslarının ortaya koyulmasıdır. Algoritmaların geliştirilmesi ve test edilmesi için görüntüler Bursa Barakfaki köyünde yerel bir çiftçiye ait Elegance Lady çeşidi şeftali bahçesinden alınmıştır. Çalışmada histogram eşitleme ve logaritma dönüşümü gibi görüntü işleme tekniklerinden yararlanılarak doğal koşullarda alınmış görüntülerin aydınlanma koşulları zenginleştirilmiştir. Görüntü işleme tekniklerinden yararlanarak geliştirilen algoritmalar renk, şekil ve doku bilgisini kullanılan öznitelik çıkarma yöntemleriyle görüntülerden çıkarmışlardır. Bu çalışmada kullanılan öznitelik çıkarma yöntemleri, olgunlaşmamış şeftali bitkisini renkli görüntülerde saptama anlamında yenidirler. Çıkarılan özniteliklerle farklı sınıflandırıcıların performanslarını ortaya koymak amacıyla 7 adet sınıflandırıcı eğitilerek denenmiştir. Diskriminant analizi, K-en-yakın komşu, naive Bayes, regresyon ağaçları, sınıflandırma ağaçları, yapay sinir ağları ve destek vektör makinası bu çalışmada kullanılan sınıflandırıcılardır. Görüntülerde arka plan elemesi yapmak ve potansiyel meyve bölgelerini saptamak amacıyla üç farklı görüntü tarama yöntemi geliştirilmiştir. Algoritmaların meyve olarak sınıflandırdığı alt-pencereler blob analiziyle tekilleştirilip meyve sayıları tespit edilmiştir. Farklı meyve tarama yöntemleri, istatistiksel ve deneysel yollarla belirlenen farklı öznitelik birleşimleri, farklı yapay sınıflandırıcılarının kullanımıyla değişik algoritmalar türetilmiş, eğitim ve test setleri üzerinde denemeler gerçekleştirilmiştir. Geliştirilen algoritmaların performansları farklı aydınlanma koşullarını içerecek şekilde karşılaştırılmıştır. Çalışma kapsamında geliştirilen algoritmaların bazılarında % 85'ler düzeyinde saptama başarısı elde edilmiştir. Geliştirilen algoritmalar doğal bahçe koşullarında alınmış görüntülerdeki aydınlanma değişimlerinden fazla etkilenmemişlerdir.tr_TR
dc.description.abstractThe objectives of this study were to develop algorithms for detecting and counting immature peach fruit, having economic importance for our country, in colored natural canopy images acquired in natural orchard conditions using image processing and artificial classifiers and to provide algorithms having the best performance. For developing and testing algorithms, images were obtained from a peach orchard located in Barakfaki, Bursa. By utilizing image processing techniques such as logarithm transform and histogram equalization, illumination conditions of the images taken under natural conditions were enhanced. Algorithms extracted features via feature extraction methods relied on color, shape and texture. Feature extraction methods used in this study were novel for detecting immature peach fruits in color images. To provide performances of different classifiers with extracted features, 7 classifiers were trained and performed. Discriminant analysis, K-nearest neighbors, naive Bayes, regression trees, classification trees, neural networks and support vector machines were the classifiers used in this study. To eliminate background and to locate potential fruit regions in the images, 3 different image scanning approaches were developed. To count fruits in the images, sub-windows classified as fruit by the classifiers were singularized by a blob analysis. Various algorithms were derived by usage of different image scanning approaches, different feature combinations determined by statistical and experiential methods, different classifiers. Using a training set and a test set, experiments were carried out. Performances of the algorithms were compared including different illumination conditions. Some of the algorithms developed in the present study provided about 85% of detection performance. Proposed algorithms were not affected intensively by illumination changes in the images taken under natural orchard conditions.en_US
dc.format.extentXVII, 198 sayfatr_TR
dc.identifier.citationKurtulmuş, F. (2012). Olgunlaşmamış şeftali meyvesini doğal bahçe koşullarında alınmış görüntülerde görüntü işleme teknikleri ve yapay sınıflandırıcılarla saptayarak sayan algoritmaların geliştirilmesi. Yayınlanmamış doktora tezi. Uludağ Üniversitesi Fen Bilimleri Enstitüsü.tr_TR
dc.identifier.urihttp://hdl.handle.net/11452/8828
dc.language.isotrtr_TR
dc.publisherUludağ Üniversitesitr_TR
dc.relation.publicationcategoryTeztr_TR
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBilgisayarlı görütr_TR
dc.subjectMeyve saptamatr_TR
dc.subjectOlgunlaşmamış şeftalitr_TR
dc.subjectVerim haritalamatr_TR
dc.subjectHassas tarımtr_TR
dc.subjectYapay sınıflandırıcılartr_TR
dc.subjectComputer visionen_US
dc.subjectFruit detectionen_US
dc.subjectImmature peachen_US
dc.subjectYield mappingen_US
dc.subjectPrecision agricultureen_US
dc.subjectStatistical classifiersen_US
dc.titleOlgunlaşmamış şeftali meyvesini doğal bahçe koşullarında alınmış görüntülerde görüntü işleme teknikleri ve yapay sınıflandırıcılarla saptayarak sayan algoritmaların geliştirilmesi.tr_TR
dc.title.alternativeDevelopping algorithms to detect and count immature peach in colour images acquired in natural orchard conditions using image processing and artificial classifiersen_US
dc.typedoctoralThesisen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
329347.pdf
Size:
11.11 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: