A model of solitary waves in a nonlinear elastic circular rod: Abundant different type exact solutions and conservation laws

dc.contributor.authorSeadawy, Aly R.
dc.contributor.buuauthorÇelik, Nisa
dc.contributor.buuauthorSağlam Özkan, Yeşim
dc.contributor.buuauthorYaşar, Emrullah
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Anabilim Dalı.
dc.contributor.orcid0000-0002-1364-5137tr_TR
dc.contributor.researcheridABD-1401-2020
dc.contributor.researcheridG-5333-2017
dc.contributor.researcheridAAG-9947-2021
dc.contributor.scopusid36005160000tr_TR
dc.contributor.scopusid57193338830tr_TR
dc.contributor.scopusid23471031300tr_TR
dc.date.accessioned2024-01-23T11:16:53Z
dc.date.available2024-01-23T11:16:53Z
dc.date.issued2021-02
dc.description.abstractIn this study, we have dealt with a wave equation containing 4th order nonlinear mixed derivative. This model corresponds to solitary waves in nonlinear elastic circular rod. One dimensional optimal systems corresponding to Lie symmetry generator sub-algebras, symmetry reductions, and group invariant solutions corresponding to these systems have been systematically produced by Lie symmetry analysis of this model. In addition, traveling wave solutions were obtained with the help of an useful integration scheme of the model. These solutions are structures with physical properties of hyperbolic, trigonometric and rational solution types. Numerical simulations of the obtained solutions for different values of the parameters were made. The stability property of the obtained solutions is tested to show the ability of obtained solutions. In addition, the local conservation laws of the model were obtained with the help of the multiplier homotopy method. (c) 2020 Elsevier Ltd. All rights reserved.en_US
dc.identifier.citationÇelik, N. vd. (2021). "A model of solitary waves in a nonlinear elastic circular rod: Abundant different type exact solutions and conservation laws". Chaos, Solitons and Fractals, 143.en_US
dc.identifier.doihttps://doi.org/10.1016/j.chaos.2020.110486
dc.identifier.issn0960-0779
dc.identifier.issn1873-2887
dc.identifier.scopus2-s2.0-85098451107tr_TR
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S096007792030878X
dc.identifier.urihttps://hdl.handle.net/11452/39269
dc.identifier.volume143tr_TR
dc.identifier.wos000620179000003
dc.indexed.scopusScopusen_US
dc.indexed.wosSCIEen_US
dc.language.isoenen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.collaborationYurt dışı
dc.relation.journalChaos, Solitons and Fractalsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectNonlinear elastic circular roden_US
dc.subjectExact solutionsen_US
dc.subjectConservation lawsen_US
dc.subjectAlgebraen_US
dc.subjectNonlinear equationsen_US
dc.subjectPhysical propertiesen_US
dc.subjectStabilityen_US
dc.subjectGroup invariant solutionsen_US
dc.subjectIntegration schemeen_US
dc.subjectLie symmetry analysisen_US
dc.subjectLocal conservationen_US
dc.subjectNonlinear elasticsen_US
dc.subjectStability propertiesen_US
dc.subjectSymmetry reductionen_US
dc.subjectTraveling wave solutionen_US
dc.subjectExact solutionsen_US
dc.subjectNonlinear elastic circular roden_US
dc.subject.scopusExact Solution; Optical Solitons; (G′/G)-expansion Methoden_US
dc.subject.wosMathematics, Interdisciplinary Applicationsen_US
dc.subject.wosPhysics, Multidisciplinaryen_US
dc.subject.wosPhysics, Mathematicalen_US
dc.titleA model of solitary waves in a nonlinear elastic circular rod: Abundant different type exact solutions and conservation lawsen_US
dc.typeArticleen_US
dc.wos.quartileQ1en_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: