Lineer olmayan Schrödinger tipi denklemlerın analitik ve yaklaşık çözümlerinin elde edilmesi
Date
2024-06-11
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Bursa Uludağ Üniversitesi
Abstract
Bu tez çalışmasında, lineer olmayan oluşum türü denklemlerin yeni bir üyesi olan çift (ikili) modlu lineer olmayan Schrödinger denklemi ile Caputo türev operatörü anlamında zaman-kesir mertebeli lineer olmayan Schrödinger denklemini ele almaktayız. Çift modlu lineer olmayan Schrödinger denklemini, tam mertebeli çift modlu lineer olmayan Schrödinger denklemi ve uyumlu türev operatörü anlamında uzay-zaman kesir mertebeli çift modlu lineer olmayan Schrödinger denklemi olacak şekilde sunmaktayız. Caputo türev operatörü anlamında zaman-kesir mertebeli lineer olmayan Schrödinger denklemini de tuzaklama potansiyeli sıfır olan Caputo türev operatörü anlamında zaman-kesir mertebeli lineer olmayan Schrödinger denklemi ve tuzaklama potansiyeline sahip Caputo türev operatörü anlamında zaman-kesir mertebeli lineer olmayan Schrödinger denklemi olacak biçimde takdim etmekteyiz. Tam mertebeli çift modlu lineer olmayan Schrödinger denkleminin ilerleyen dalga çözümlerini teşkil etmek üzere genişletilmiş ( G ′ G )-açılım metodu, genişletilmiş cebirsel metot, dinamik sistemler metodu ve genişletilmiş rasyonel sinüs hiperbolik-kosinüs hiperbolik metotlarını kullanmaktayız. Ayrıca bu denklem formunun Lie simetri analizini inceleyip, çarpan metodunu kullanarak korunum kanunlarını araştırmaktayız. Uyumlu türev operatörü anlamında uzay-zaman kesir mertebeli çift modlu lineer olmayan Schrödinger denkleminin ilerleyen dalga çözümlerini teşkil etmek üzere genelleştirilmiş eksponansiyel rasyonel fonksiyon metodunu ve fonksiyonel değiştirme metodunu kullanmaktayız. Ayrıca çoklu dalga ve etkileşimli çözümleri araştırmak üzere üç dalgalı metot, homoklinik yaklaşım ve M şekilli, kink-I ve haydut dalga içeren etkileşim çözümleri metotlarını kullanmaktayız. Son olarak, farklı başlangıç değer koşulları altında, tuzaklama potansiyeli sıfır olan Caputo türev operatörü anlamında zaman-kesir mertebeli lineer olmayan Schrödinger denklemi ile tuzaklama potansiyeline sahip Caputo türev operatörü anlamında zaman-kesir mertebeli lineer olmayan Schrödinger denklemini sunmaktayız. Yaklaşık çözümleri araştırmak üzere rezidüel kuvvet serisi metodu olarak adlandırılan yeni bir iteratif yöntem kullanmaktayız. Tüm bunların yanında, her bir metot için elde ettiğimiz değişik türden çözümlerin parametrelerine farklı değerler vererek, sayısal simülasyonlarını da takdim etmekteyiz.
In this thesis, we consider a new member of the nonlinear evolution type equations, i.e., the dual mode nonlinear Schrödinger equation, and time-fractional order nonlinear Schrödinger equation in terms of the Caputo derivative operator. We present the dual mode nonlinear Schrödinger equation as an integer order dual mode nonlinear Schrödinger equation and the space-time fractional order dual mode nonlinear Schrödinger equation regarding the conformable derivative operator. We also offer the time-fractional order nonlinear Schrödinger equation in terms of the Caputo derivative operator as the time-fractional order nonlinear Schrödinger equation in terms of the Caputo derivative operator with zero trapping potential and the time-fractional order nonlinear Schrödinger equation in terms of the Caputo derivative operator with trapping potential. We use the extended ( G ′ G )-expansion method, extended algebraic method, dynamical systems method, and extended rational sine hyperbolic-cosine hyperbolic methods to construct traveling wave solutions of the integer order dual mode nonlinear Schrödinger equation. We also analyze the Lie symmetry of this equation form and investigate the conservation laws using the multiplier method. We utilize the generalized exponential rational function method, and functional variable method to construct the traveling wave solutions of the space-time fractional order dual mode nonlinear Schrödinger equation regarding the conformable derivative operator. We also employ the three-wave method, homoclinic approach, and M-shaped, kink-I, and rogue wave methods to investigate multi-wave and interaction solutions. Eventually, under different initial value conditions, we offer the time-fractional order nonlinear Schrödinger equation in terms of the Caputo derivative operator with zero trapping potential and the time-fractional order nonlinear Schrödinger equation in terms of the Caputo derivative operator with trapping potential. We use a new iterative method, called the residual power series method, to search for approximate solutions. In addition, we also propose numerical simulations of the various types of solutions obtained for each method by giving different values to their parameters.
In this thesis, we consider a new member of the nonlinear evolution type equations, i.e., the dual mode nonlinear Schrödinger equation, and time-fractional order nonlinear Schrödinger equation in terms of the Caputo derivative operator. We present the dual mode nonlinear Schrödinger equation as an integer order dual mode nonlinear Schrödinger equation and the space-time fractional order dual mode nonlinear Schrödinger equation regarding the conformable derivative operator. We also offer the time-fractional order nonlinear Schrödinger equation in terms of the Caputo derivative operator as the time-fractional order nonlinear Schrödinger equation in terms of the Caputo derivative operator with zero trapping potential and the time-fractional order nonlinear Schrödinger equation in terms of the Caputo derivative operator with trapping potential. We use the extended ( G ′ G )-expansion method, extended algebraic method, dynamical systems method, and extended rational sine hyperbolic-cosine hyperbolic methods to construct traveling wave solutions of the integer order dual mode nonlinear Schrödinger equation. We also analyze the Lie symmetry of this equation form and investigate the conservation laws using the multiplier method. We utilize the generalized exponential rational function method, and functional variable method to construct the traveling wave solutions of the space-time fractional order dual mode nonlinear Schrödinger equation regarding the conformable derivative operator. We also employ the three-wave method, homoclinic approach, and M-shaped, kink-I, and rogue wave methods to investigate multi-wave and interaction solutions. Eventually, under different initial value conditions, we offer the time-fractional order nonlinear Schrödinger equation in terms of the Caputo derivative operator with zero trapping potential and the time-fractional order nonlinear Schrödinger equation in terms of the Caputo derivative operator with trapping potential. We use a new iterative method, called the residual power series method, to search for approximate solutions. In addition, we also propose numerical simulations of the various types of solutions obtained for each method by giving different values to their parameters.
Description
Keywords
Tam mertebeli çift modlu lineer olmayan Scrödinger denklemi, Lie simetri analizi, Sonsuz küçük üreteçler, Simetri indirgemeleri ve benzerlik çözümleri, Korunum kanunları, Uyumlu türev operatörü anlamında uzay- zaman kesir mertebeli çift modlu lineer olmayan Schrödinger denklemi, Çoklu dalga ve etkiles¸imli çözümler, Tuzaklama potansiyeli sıfır olan Caputo türev operatörü anlamında zaman-kesir mertebeli lineer olmayan Schrödinger denklemi, Tuzaklama potansiyeline sahip Caputo türev operatörü anlamında zaman-kesir mertebeli lineer olmayan Schrödin- ger denklemi, Rezidüel kuvvet serisi metodu, Analitik çözümler, Yaklaşık çözümler., Integer order dual mode nonlinear Schrödinger equation, Traveling wave solutions, Lie symmetry analysis, Infinitesimal generators, Symmetry reductions and si- milarity solutions, Conservation laws, the space-time fractional order dual mode nonlinear Schrödinger equation regarding the conformable derivative operator, Multi-wave and inte- raction solutions, the Time-fractional order nonlinear Schrödinger equation in terms of the Caputo derivative operator with zero trapping potential, Time-fractional order nonlinear Schrödinger equations in terms of the Caputo derivative operator with trapping potential, Residual power series method, Analytic solutions, Approximate solutions.