Estimating suspended sediment load with multivariate adaptive regression spline, teaching-learning based optimization, and artificial bee colony models

dc.contributor.authorYılmaz, Banu
dc.contributor.authorAras, Egemen
dc.contributor.authorNacar, Sinan
dc.contributor.buuauthorKartal, Murat
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/İnşaat Mühendisliği Bölümü.tr_TR
dc.contributor.orcid0000-0003-0897-4742tr_TR
dc.contributor.researcheridAAZ-6851-2020tr_TR
dc.contributor.scopusid24471611900tr_TR
dc.date.accessioned2024-01-25T07:12:20Z
dc.date.available2024-01-25T07:12:20Z
dc.date.issued2018-10-15
dc.description.abstractThe functional life of a dam is often determined by the rate of sediment delivery to its reservoir. Therefore, an accurate estimate of the sediment load in rivers with dams is essential for designing and predicting a dam's useful lifespan. The most credible method is direct measurements of sediment input, but this can be very costly and it cannot always be implemented at all gauging stations. In this study, we tested various regression models to estimate suspended sediment load (SSL) at two gauging stations on the Coruh River in Turkey, including artificial bee colony (ABC), teaching-learning-based optimization algorithm(TLBO), and multivariate adaptive regression splines (MARS). These models were also compared with one another and with classical regression analyses (CRA). Streamflow values and previously collected data of SSL were used as model inputs with predicted SSL data as output. Two different training and testing dataset configurations were used to reinforce the model accuracy. For the MARS method, the root mean square error value was found to range between 35% and 39% for the test two gauging stations, which was lower than errors for other models. Error values were even lower (7% to 15%) using another dataset. Our results indicate that simultaneous measurements of stream flow with SSL provide the most effective parameter for obtaining accurate predictive models and that MARS is the most accurate model for predicting SSL. (C) 2018 Elsevier B.V. All rights reserved.en_US
dc.identifier.citationYılmaz, B. vd. (2018). ''Estimating suspended sediment load with multivariate adaptive regression spline, teaching-learning based optimization, and artificial bee colony models''. Science of the Total Environment, 639, 826-840.en_US
dc.identifier.doihttps://doi.org/10.1016/j.scitotenv.2018.05.153
dc.identifier.endpage840tr_TR
dc.identifier.issn0048-9697
dc.identifier.issn1879-1026
dc.identifier.pubmed29803053tr_TR
dc.identifier.scopus2-s2.0-85047263786tr_TR
dc.identifier.startpage826tr_TR
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0048969718318011
dc.identifier.urihttps://hdl.handle.net/11452/39311
dc.identifier.volume639tr_TR
dc.identifier.wos000436806200082
dc.indexed.pubmedPubMeden_US
dc.indexed.scopusScopusen_US
dc.indexed.wosSCIEen_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.collaborationYurt içitr_TR
dc.relation.journalScience of the Total Environmenten_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCoruh River Basinen_US
dc.subjectHeuristic regressionen_US
dc.subjectOptimization algorithmen_US
dc.subjectReservoir lifeen_US
dc.subjectSupport vector machinesen_US
dc.subjectNeural-network modelsen_US
dc.subjectPredictionen_US
dc.subjectAlgorithmen_US
dc.subjectFuzzyen_US
dc.subjectAnnen_US
dc.subjectSimulationen_US
dc.subjectWaveleten_US
dc.subjectTreeen_US
dc.subjectPerformanceen_US
dc.subjectErrorsen_US
dc.subjectMean square erroren_US
dc.subjectOptimizationen_US
dc.subjectRegression analysisen_US
dc.subjectReservoirs (water)en_US
dc.subjectRiversen_US
dc.subjectStatistical testsen_US
dc.subjectStream flowen_US
dc.subjectArtificial bee colonies (ABC)en_US
dc.subjectHeuristic regressionen_US
dc.subjectMultivariate adaptive regression splinesen_US
dc.subjectOptimization algorithmsen_US
dc.subjectRiver basinsen_US
dc.subjectSimultaneous measurementen_US
dc.subjectSuspended sediment loadsen_US
dc.subjectTeaching-learning-based optimizationsen_US
dc.subjectSuspended sedimentsen_US
dc.subjectEnvironmental sciences & ecologyen_US
dc.subject.emtreeAccuracyen_US
dc.subject.emtreeAlgorithmen_US
dc.subject.emtreeArticleen_US
dc.subject.emtreeArtificial bee colonyen_US
dc.subject.emtreeInformation processingen_US
dc.subject.emtreeLinear regression analysisen_US
dc.subject.emtreeMultivariate adaptive regression splineen_US
dc.subject.emtreeNonhumanen_US
dc.subject.emtreePredictionen_US
dc.subject.emtreePriority journalen_US
dc.subject.emtreeRegression analysisen_US
dc.subject.emtreeRiveren_US
dc.subject.emtreeSedimenten_US
dc.subject.emtreeStatistical analysisen_US
dc.subject.emtreeStatistical modelen_US
dc.subject.emtreeSuspended sediment loaden_US
dc.subject.emtreeTeaching learning based optimizationen_US
dc.subject.emtreeTurkey (republic)en_US
dc.subject.emtreeAnimalen_US
dc.subject.emtreeBeeen_US
dc.subject.emtreeEnvironmental monitoringen_US
dc.subject.emtreePhysiologyen_US
dc.subject.emtreeProceduresen_US
dc.subject.emtreeRegression analysisen_US
dc.subject.emtreeSedimenten_US
dc.subject.emtreeTurkey (bird)en_US
dc.subject.meshAnimalsen_US
dc.subject.meshBeesen_US
dc.subject.meshEnvironmental monitoringen_US
dc.subject.meshGeologic Sedimentsen_US
dc.subject.meshModels, statisticalen_US
dc.subject.meshRegression analysisen_US
dc.subject.meshRiversen_US
dc.subject.meshTurkeyen_US
dc.subject.scopusPrediction; Flood Forecasting; Water Tablesen_US
dc.subject.wosEnvironmental Sciencesen_US
dc.titleEstimating suspended sediment load with multivariate adaptive regression spline, teaching-learning based optimization, and artificial bee colony modelsen_US
dc.typeArticleen_US
dc.wos.quartileQ1en_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: