Cross-validation of neural network applications for automatic new topic identification

dc.contributor.buuauthorÖzmutlu, Huseyin Cenk
dc.contributor.buuauthorÇavdur, Fatih
dc.contributor.buuauthorÖzmutlu, Seda
dc.contributor.departmentUludağ Üniversitesi/Mühendislik Fakültesi/Endüstri Mühendisliği Bölüm.tr_TR
dc.contributor.orcid0000-0001-8054-5606tr_TR
dc.contributor.researcheridAAH-4480-2021tr_TR
dc.contributor.researcheridABH-5209-2020tr_TR
dc.contributor.researcheridAAG-9471-2021tr_TR
dc.contributor.scopusid6603061328tr_TR
dc.contributor.scopusid8419687000tr_TR
dc.contributor.scopusid6603660605tr_TR
dc.date.accessioned2024-04-04T11:30:52Z
dc.date.available2024-04-04T11:30:52Z
dc.date.issued2008-02-01
dc.description.abstractThe purpose of this study is to provide results from experiments designed to investigate-the cross-validation of an artificial neural network application to automatically identify topic changes in Web search engine user sessions by using data logs of different Web search engines for training and testing the neural network. Sample data logs from the FAST and Excite search engines are used in this study. The results of the study show that identification of topic shifts and continuations on a particular Web search engine user session can be achieved with neural networks that are trained on a different Web search engine data log. Although FAST and Excite search engine users differ with respect to some user characteristics (e.g., number of queries per session, number of topics per session), the results of this study demonstrate that both search engine users display similar characteristics as they shift from one topic to another during a single search session. The key finding of this study is that a neural network that is trained on a selected data log could be universal; that is, it can be applicable on all Web search engine transaction logs regardless of the source of the training data log.en_US
dc.identifier.citationÖzmutlu, H.C. vd. (2008). "Cross-validation of neural network applications for automatic new topic identification". Journal of the American Society for Information Science and Technology, 59(3), 339-362.en_US
dc.identifier.endpage362tr_TR
dc.identifier.issn1532-2882
dc.identifier.issn1532-2890
dc.identifier.issue3tr_TR
dc.identifier.scopus2-s2.0-39649103881tr_TR
dc.identifier.startpage339tr_TR
dc.identifier.urihttps://doi.org/10.1002/asi.20696en_US
dc.identifier.urihttps://asistdl.onlinelibrary.wiley.com/doi/full/10.1002/asi.20696en_US
dc.identifier.urihttps://hdl.handle.net/11452/41009en_US
dc.identifier.volume59tr_TR
dc.identifier.wos000252821600001
dc.indexed.scopusScopusen_US
dc.indexed.wosSCIEen_US
dc.indexed.wosSSCIen_US
dc.language.isoenen_US
dc.publisherWiley Backwellen_US
dc.relation.journalJournal of the American Society for Information Science and Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectComputer scienceen_US
dc.subjectInformation science & library scienceen_US
dc.subjectData structuresen_US
dc.subjectIdentification (control systems)en_US
dc.subjectSearch enginesen_US
dc.subjectUser interfacesen_US
dc.subjectEngine transactionen_US
dc.subjectSample data logsen_US
dc.subjectSearch sessionen_US
dc.subjectNeural networksen_US
dc.subjectInformation-seekingen_US
dc.subjectWeb queriesen_US
dc.subjectContexten_US
dc.subjectUsersen_US
dc.subjectRelevanceen_US
dc.subjectTrendsen_US
dc.subjectLifeen_US
dc.subject.scopusQuery Reformulation; Image Indexing; Digital Librariesen_US
dc.subject.wosComputer science, information systemsen_US
dc.subject.wosInformation science & library scienceen_US
dc.titleCross-validation of neural network applications for automatic new topic identificationen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Özmutlu_vd_2008.pdf
Size:
521.51 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections