Publication:
Cross-validation of neural network applications for automatic new topic identification

dc.contributor.buuauthorÖzmutlu, Huseyin Cenk
dc.contributor.buuauthorÇavdur, Fatih
dc.contributor.buuauthorÖzmutlu, Seda
dc.contributor.departmentMühendislik Fakültesi
dc.contributor.departmentEndüstri Mühendisliği Bölüm
dc.contributor.orcid0000-0001-8054-5606
dc.contributor.researcheridAAH-4480-2021
dc.contributor.researcheridABH-5209-2020
dc.contributor.researcheridAAG-9471-2021
dc.contributor.scopusid6603061328
dc.contributor.scopusid8419687000
dc.contributor.scopusid6603660605
dc.date.accessioned2024-04-04T11:30:52Z
dc.date.available2024-04-04T11:30:52Z
dc.date.issued2008-02-01
dc.description.abstractThe purpose of this study is to provide results from experiments designed to investigate-the cross-validation of an artificial neural network application to automatically identify topic changes in Web search engine user sessions by using data logs of different Web search engines for training and testing the neural network. Sample data logs from the FAST and Excite search engines are used in this study. The results of the study show that identification of topic shifts and continuations on a particular Web search engine user session can be achieved with neural networks that are trained on a different Web search engine data log. Although FAST and Excite search engine users differ with respect to some user characteristics (e.g., number of queries per session, number of topics per session), the results of this study demonstrate that both search engine users display similar characteristics as they shift from one topic to another during a single search session. The key finding of this study is that a neural network that is trained on a selected data log could be universal; that is, it can be applicable on all Web search engine transaction logs regardless of the source of the training data log.
dc.identifier.citationÖzmutlu, H.C. vd. (2008). "Cross-validation of neural network applications for automatic new topic identification". Journal of the American Society for Information Science and Technology, 59(3), 339-362.
dc.identifier.endpage362
dc.identifier.issn1532-2882
dc.identifier.issn1532-2890
dc.identifier.issue3
dc.identifier.scopus2-s2.0-39649103881
dc.identifier.startpage339
dc.identifier.urihttps://doi.org/10.1002/asi.20696
dc.identifier.urihttps://asistdl.onlinelibrary.wiley.com/doi/full/10.1002/asi.20696
dc.identifier.urihttps://hdl.handle.net/11452/41009
dc.identifier.volume59
dc.identifier.wos000252821600001
dc.indexed.scopusScopus
dc.indexed.wosSCIE
dc.indexed.wosSSCI
dc.language.isoen
dc.publisherWiley Backwell
dc.relation.journalJournal of the American Society for Information Science and Technology
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectComputer science
dc.subjectInformation science & library science
dc.subjectData structures
dc.subjectIdentification (control systems)
dc.subjectSearch engines
dc.subjectUser interfaces
dc.subjectEngine transaction
dc.subjectSample data logs
dc.subjectSearch session
dc.subjectNeural networks
dc.subjectInformation-seeking
dc.subjectWeb queries
dc.subjectContext
dc.subjectUsers
dc.subjectRelevance
dc.subjectTrends
dc.subjectLife
dc.subject.scopusQuery Reformulation; Image Indexing; Digital Libraries
dc.subject.wosComputer science, information systems
dc.subject.wosInformation science & library science
dc.titleCross-validation of neural network applications for automatic new topic identification
dc.typeArticle
dspace.entity.typePublication
local.contributor.departmentMühendislik Fakültesi/Endüstri Mühendisliği Bölüm
local.indexed.atWOS
local.indexed.atScopus

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Özmutlu_vd_2008.pdf
Size:
521.51 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: