On the exponential diophantine equation (n-1)(x) + (n+2)(y) = n(z)
dc.contributor.author | Bai, Hairong | |
dc.contributor.author | Yuan, Pingzhi | |
dc.contributor.buuauthor | Kızıldere, Elif | |
dc.contributor.buuauthor | Soydan, Gökhan | |
dc.contributor.department | Bursa Uludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü. | tr_TR |
dc.contributor.orcid | 0000-0002-6321-4132 | tr_TR |
dc.contributor.scopusid | 57204173004 | tr_TR |
dc.contributor.scopusid | 23566953200 | tr_TR |
dc.date.accessioned | 2022-12-15T11:09:33Z | |
dc.date.available | 2022-12-15T11:09:33Z | |
dc.date.issued | 2020-03-30 | |
dc.description.abstract | Suppose that n is a positive integer. We show that the only positive integer solutions (n, x, y, z) of the exponential Diophantine equation (n - 1)(x) + (n + 2)(y) = nz, n >= 2, xyz not equal 0, are (3, 2, 1, 2), (3,1, 2, 3). The main tools in the proofs are Baker's theory and Bilu-Hanrot-Voutier's result on primitive divisors of Lucas numbers. | en_US |
dc.description.sponsorship | National Natural Science Foundation of China (NSFC) (11671153) | en_US |
dc.identifier.citation | Bai, H. vd. (2020). "On the exponential diophantine equation (n-1)(x) + (n+2)(y) = n(z)". Colloquium Mathematicum, 161(2), 239-249. | en_US |
dc.identifier.endpage | 249 | tr_TR |
dc.identifier.issn | 0010-1354 | |
dc.identifier.issn | 1730-6302 | |
dc.identifier.issue | 2 | tr_TR |
dc.identifier.scopus | 2-s2.0-85084753117 | tr_TR |
dc.identifier.startpage | 239 | tr_TR |
dc.identifier.uri | https://doi.org/10.4064/cm7668-6-2019 | |
dc.identifier.uri | https://www.impan.pl/pl/wydawnictwa/czasopisma-i-serie-wydawnicze/colloquium-mathematicum/all/161/2/113556/on-the-exponential-diophantine-equation-n-1-x-n-2-y-n-z | |
dc.identifier.uri | http://hdl.handle.net/11452/29912 | |
dc.identifier.volume | 161 | tr_TR |
dc.identifier.wos | 000571757800005 | |
dc.indexed.scopus | Scopus | en_US |
dc.indexed.wos | SCIE | en_US |
dc.language.iso | en | en_US |
dc.publisher | Ars Polona-Ruch | en_US |
dc.relation.collaboration | Yurt dışı | tr_TR |
dc.relation.journal | Colloquium Mathematicum | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi | tr_TR |
dc.relation.tubitak | 117f287 | tr_TR |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Exponential Diophantine equation | en_US |
dc.subject | Primitive divisors of Lucas sequences | en_US |
dc.subject | Jacobi symbol | en_US |
dc.subject | Lower bounds for linear forms in two logarithms | en_US |
dc.subject | Primitive divisors | en_US |
dc.subject | Linear-forms | en_US |
dc.subject | 2 Logarithms | en_US |
dc.subject | Conjecture | en_US |
dc.subject | Number | en_US |
dc.subject | Lucas | en_US |
dc.subject | Mathematics | en_US |
dc.subject.scopus | Diophantine Equation; Number; Linear Forms in Logarithms | en_US |
dc.subject.wos | Mathematics | en_US |
dc.title | On the exponential diophantine equation (n-1)(x) + (n+2)(y) = n(z) | en_US |
dc.type | Article | |
dc.wos.quartile | Q4 | en_US |
Files
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: