Development of silver-based bactericidal composite nanofibers by airbrushing

No Thumbnail Available

Date

2018-04

Journal Title

Journal ISSN

Volume Title

Publisher

Amer Scientific Publishers

Abstract

In this article, we report a simple, cost-effective and eco-friendly method of airbrushing for the fabrication of antibacterial composite nanofibers using Nylon-6 and silver chloride (AgCl). The Nylon-6 is a widely used polymer for various biomedical applications because of its excellent biocompatibility and mechanical properties. Similarly, silver has also been known for their antibacterial, antifungal, antiviral, and anti-inflammatory properties. In order to enhance the antibacterial functionality of the Nylon-6, composite nanofibers in combination with AgCl have been fabricated using airbrush method. The chemical functional groups and morphological studies of the airbrushed Nylon-6/AgCl composite nanofibers were carried out by FTIR and SEM, respectively. The antibacterial activity of airbrushed Nylon-6/AgCl composite nanofibers was evaluated using Gram + ve (Staphylococcus aureus) and Gram -ve (Escherichia coli) bacterial strains. The results showed that the airbrushed Nylon-6/AgCl composite nanofibers have better antibacterial activity against the tested bacterial strains than the airbrushed Nylon-6 nanofibers. Therefore, the airbrushed Nylon-6/AgCl composite nanofibers could be used as a potential antibacterial scaffolding system for tissue engineering and regenerative medicine.

Description

Keywords

Chemistry, Science & technology - other topics, Materials science, Physics, Airbrushing, Scaffold, Nylon-6, Silver chloride, Antibacterial agent, Electrospun nylon-6 nanofibers, Bone tissue regeneration, In-situ deposition, Scaffolds, Performance

Citation

Bhullar, S. K. vd. (2018). ''Development of silver-based bactericidal composite nanofibers by airbrushing''. Journal of Nanoscience and Nanotechnology, 18(4), 2951-2955.

Collections