A family of integer Somos sequences

dc.contributor.buuauthorGezer, Betül
dc.contributor.buuauthorÇapa, Buse
dc.contributor.buuauthorBizim, Osman
dc.contributor.departmentUludağ Üniversitesi/Fen-Edebiyat Fakültesi/Matematik Bölümü.tr_TR
dc.contributor.researcheridAAH-1547-2021tr_TR
dc.contributor.researcheridAAH-1468-2021tr_TR
dc.contributor.scopusid24485316600tr_TR
dc.contributor.scopusid57194222837tr_TR
dc.contributor.scopusid9245697900tr_TR
dc.date.accessioned2023-06-08T10:28:13Z
dc.date.available2023-06-08T10:28:13Z
dc.date.issued2016
dc.description.abstractSomos sequences are sequences of rational numbers defined by a bilinear recurrence relation. Remarkably, although the recurrences describing the Somos sequences are rational, some Somos sequences turn out to have only integer terms. In this paper, a family of Somos 4 sequences is given and it is proved that all Somos 4 sequences associated to Tate normal forms with h(-1) - +/- 1 consist entirely of integers for n >= 0. It is also shown that there are infinitely many squares and infinitely many cubes in Somos 4 sequences associated to Tate normal forms.en_US
dc.identifier.citationGezer, B. vd. (2016). "A family of integer Somos sequences". Mathematical Reports, 18(3), 417-435.en_US
dc.identifier.endpage435tr_TR
dc.identifier.issn1582-3067
dc.identifier.issue3tr_TR
dc.identifier.scopus2-s2.0-85019293455tr_TR
dc.identifier.startpage417tr_TR
dc.identifier.urihttp://hdl.handle.net/11452/32978
dc.identifier.volume18tr_TR
dc.identifier.wos000383902800011
dc.indexed.scopusScopusen_US
dc.indexed.wosSCIEen_US
dc.language.isoenen_US
dc.publisherEditura Acad Romaneen_US
dc.relation.journalMathematical Reportsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergitr_TR
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMathematicsen_US
dc.subjectSomos sequencesen_US
dc.subjectElliptic curvesen_US
dc.subjectTorsion pointsen_US
dc.subjectElliptic divisibility sequencesen_US
dc.subjectLucas sequencesen_US
dc.subjectLaurent phenomenonen_US
dc.subjectPerfect powersen_US
dc.subjectSquaresen_US
dc.subjectCubesen_US
dc.subjectFibonaccien_US
dc.subjectTorsionen_US
dc.subjectCurvesen_US
dc.subject.scopusSymmetry; Discrete Equations; Affine Weyl Groupsen_US
dc.subject.wosMathematicsen_US
dc.titleA family of integer Somos sequencesen_US
dc.typeArticle
dc.wos.quartileQ4en_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: