Yayın:
Rational points in geometric progression on the unit circle

Placeholder

Akademik Birimler

Kurum Yazarları

Çelik, Gamze Savaş

Yazarlar

Çelik, Gamze Savaş
Sadek, Mohammad
Soydan, Gökhan

Danışman

Dil

Türü

Yayıncı:

Kossuth Lajos Tudomanyegyetem

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Özet

A sequence of rational points on an algebraic planar curve is said to form an r-geometric progression sequence if either the abscissae or the ordinates of these points form a geometric progression sequence with ratio r. In this work, we prove the existence of infinitely many rational numbers r such that for each r there exist infinitely many r-geometric progression sequences on the unit circle x(2) + y(2) = 1 of length at least 3.

Açıklama

Kaynak:

Anahtar Kelimeler:

Konusu

Elliptic curve, Geometric progression, Huff curve, Rational point, Unit circle, Science & technology, Physical sciences, Mathematics

Alıntı

Endorsement

Review

Supplemented By

Referenced By

58

Views

0

Downloads

View PlumX Details